1
|
Chauhan S, Jamwal P, Chauhan GS, Kumar K, Kumari B, Ranote S. Tailoring of spherical nanocellulose via esterification with methionine followed by protonation to generate two different adsorbents for mercuric ions and Congo red. Int J Biol Macromol 2024; 279:135313. [PMID: 39242000 DOI: 10.1016/j.ijbiomac.2024.135313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Herein, we report two different adsorbents from spherical nanocellulose (SNC) in successive steps, for the adsorption of Hg2+ ions and Congo red (CR). Cellulose extracted from pine needles was subsequently converted to SNC through mixed acidic hydrolysis. As-obtained SNC was esterified with methionine at C6 of the anhydroglucose unit to produce SNC-methionine ester (SNC-ME). The amino group of methionine residue in SNC-ME was protonated to SNC-PME with positive surface charge. The SNC-ME and SNC-PME were evaluated as Hg2+ ions and CR adsorbents, respectively. The SNC, SNC-ME, SNC-PME, Hg2+-loaded SNC-ME, and CR-loaded SNC-PME were characterized by FTIR, XRD, XPS, Zeta potential, BET, FESEM, EDS, and surface charge analysis. SNC-ME showed Hg2+ ions removal efficiency of 94.8 ± 1.9 % in 40 min, while SNC-PME showed CR removal efficiency of 96.1 ± 3.8 % in 90 min. The adsorption data of both the adsorbents fitted best into pseudo-second order kinetic and Langmuir isotherm. The maximum adsorption capacity of SNC-ME for Hg2+ ions was 211.5 ± 3.1 mg/g and that of SNC-PME for CR was 281.1 ± 7.1 mg/g. The astounding recyclability of the adsorbents for ten repeat cycles with significant cumulative adsorption capacity of 760.9 ± 12.8 mg/g for Hg2+ ions and 758.8 ± 12.7 mg/g for CR endorses their spectacular potentiality for wastewater treatment.
Collapse
Affiliation(s)
- Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Babita Kumari
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Sunita Ranote
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| |
Collapse
|
2
|
Ghamari M, Sun D, Dai Y, See CH, Yu H, Edirisinghe M, Sundaram S. Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review. Int J Biol Macromol 2024:136130. [PMID: 39443179 DOI: 10.1016/j.ijbiomac.2024.136130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The study underscores the urgent need for sustainable waste management by focusing on circular economy principles, government regulations, and public awareness to combat ecological threats, pollution, and climate change effects. It explores extracting nanocellulose from waste streams such as textile, paper, agricultural matter, wood, animal, and food waste, providing a detailed process framework. The emphasis is on waste-derived nanocellulose as a promising material for eco-friendly products. The research evaluates the primary mechanical and thermal properties of nanocellulose from various waste sources. For instance, cotton-derived nanocellulose has a modulus of 2.04-2.71 GPa, making it flexible for lightweight applications. Most waste-derived nanocelluloses have densities between 1550 and 1650 kg/m3, offering strong, lightweight packaging support while enhancing biodegradability and moisture control. Crystallinity influences material usage: high crystallinity is ideal for packaging (e.g., softwood, hardwood), while low crystallinity suits textiles (e.g., cotton, bamboo). Nanocelluloses exhibit excellent thermal stability above 200 °C, useful for flame-retardant coatings, insulation, and polymer reinforcement. The research provides a comprehensive guide for selecting nanocellulose materials, highlighting their potential across industries like packaging, biomedical, textiles, apparel, and electronics, promoting sustainable innovation and a more eco-conscious future.
Collapse
Affiliation(s)
- Mehrdad Ghamari
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Dongyang Sun
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Yanqi Dai
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Chan Hwang See
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Hongnian Yu
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough TS1 3BX, United Kingdom.
| |
Collapse
|
3
|
Bansal R, Barshilia HC, Pandey KK. Nanotechnology in wood science: Innovations and applications. Int J Biol Macromol 2024; 262:130025. [PMID: 38340917 DOI: 10.1016/j.ijbiomac.2024.130025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Application of nanomaterials is gaining tremendous interest in the field of wood science and technology for value addition and enhancing performance of wood and wood-based composites. This review focuses on the use of nanomaterials in improving the properties of wood and wood-based materials and protecting them from weathering, biodegradation, and other deteriorating agents. UV-resistant, self-cleaning (superhydrophobic) surfaces with anti-microbial properties have been developed using the extraordinary features of nanomaterials. Scratch-resistant nano-coatings also improve durability and aesthetic appeal of wood. Moreover, nanomaterials have been used as wood preservatives for increasing the resistance against wood deteriorating agents such as fungi, termites and borers. Wood can be made more resistant to ignition and slower to burn by introducing nano-clays or nanoparticles of metal-oxides. The use of nanocellulose and lignin nanoparticles in wood-based products has attracted huge interest in developing novel materials with improved properties. Nanocellulose and lignin nanoparticles derived/synthesized from woody biomass can enhance the mechanical properties such as strength and stiffness and impart additional functionalities to wood-based products. Cellulose nano-fibres/crystals find application in wide areas of materials science like reinforcement for composites. Incorporation of nanomaterials in resin has been used to enhance specific properties of wood-based composites. This review paper highlights some of the advancements in the use of nanotechnology in wood science, and its potential impact on the industry.
Collapse
Affiliation(s)
- Richa Bansal
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India
| | - Harish C Barshilia
- CSIR-National Aerospace Laboratories, HAL Airport Road, Bangalore 560017, India
| | - Krishna K Pandey
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India.
| |
Collapse
|
4
|
Wu X, Yuan X, Liang E, Liu L, Lin Y, Xie L, Chai X, Xu K, Du G, Zhang L. A flavonol-labelled cellulose fluorescent probe combined with composite fluorescent film imaging and smartphone technology for the detection of Fe 3. Int J Biol Macromol 2024; 259:129373. [PMID: 38216010 DOI: 10.1016/j.ijbiomac.2024.129373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Fe3+ is one of the most widely distributed and abundant elements on earth. Realizing efficient and real-time monitoring of Fe3+ is of great significance for the natural environment and the health of living organisms. In this paper, a flavonol-labelled cellulose-based fluorescent probe (ACHM) was synthesized by using dialdehyde cellulose (DAC) as the backbone and combining with flavonol derivatives (AHM - 1). The mechanism of recognizing Fe3+ was verified by characterizing the structure of ACHM by NMR, HRMS (High Resolution Mass Spectrometry), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), TG (Thermogravimetry) and SEM (Scanning Electron Microscopy). The H2O solution of the probe ACHM showed good fluorescence properties. It has quenching fluorescence properties for Fe3+, with a low limit of detection (LOD) of 0.10 μM and a fast response time of only 20 s. In addition, in order to expand the application range of the probe, ACHM was prepared as a fluorescent composite film with an average tensile strength of 32.9 MPa and an average elongation at break of 3.39 %. It shows its superiority in mechanical properties. The probe also demonstrated its practical application value for detecting Fe3+ in smartphone imaging applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Entong Liang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
5
|
Yang C, Zhu Y, Tian Z, Zhang C, Han X, Jiang S, Liu K, Duan G. Preparation of nanocellulose and its applications in wound dressing: A review. Int J Biol Macromol 2024; 254:127997. [PMID: 37949262 DOI: 10.1016/j.ijbiomac.2023.127997] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Nanocellulose, as a nanoscale polymer material, has garnered significant attention worldwide due to its numerous advantages including excellent biocompatibility, thermal stability, non-toxicity, large specific surface area, and good hydrophilicity. Various methods can be employed for the preparation of nanocellulose. Traditional approaches such as mechanical, chemical, and biological methods possess their own distinct characteristics and limitations. However, with the growing deterioration of our living environment, several green and environmentally friendly preparation techniques have emerged. These novel approaches adopt eco-friendly technologies or employ green reagents to achieve environmental sustainability. Simultaneously, there is a current research focus on optimizing traditional nanocellulose preparation methods while addressing their inherent drawbacks. The combination of mechanical and chemical methods compensates for the limitations associated with using either method alone. Nanocellulose is widely used in wound dressings owing to its exceptional properties, which can accelerate the wound healing process and reduce patient discomfort. In this paper, the principle, advantages and disadvantages of each preparation method of nanocellulose and the research findings in recent years are introduced Moreover, this review provides an overview of the utilization of nanocellulose in wound dressing applications. Finally, the prospective trends in its development alongside corresponding preparation techniques are discussed.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqin Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Chen Q, Ying D, Chen Y, Xie H, Zhang H, Chang C. Highly transparent, hydrophobic, and durable anisotropic cellulose films as electronic screen protectors. Carbohydr Polym 2023; 311:120735. [PMID: 37028870 DOI: 10.1016/j.carbpol.2023.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 03/11/2023]
Abstract
Cellulose films have attracted extensive interest in the field of burgeoning electronic devices. However, it remains a challenge to simultaneously address the difficulties including facile methodology, hydrophobicity, optical transparency, and mechanical robustness. Herein, we reported a coating-annealing approach to fabricate highly transparent, hydrophobic, and durable anisotropic cellulose films, where poly(methyl methacrylate)-b-poly(trifluoroethyl methacrylate) (PMMA-b-PTFEMA) as low surface energy chemicals was coated onto regenerated cellulose films via physical (hydrogen bonds) and chemical (transesterification) interactions. The resultant films with nano-protrusions and low surface roughness exhibited high optical transparency (92.3 %, 550 nm) and good hydrophobicity. Moreover, the tensile strength of the hydrophobic films was 198.7 MPa and 124 MPa in dry and wet states, respectively, which also showed excellent stability and durability under various conditions, such as hot water, chemicals, liquid foods, tape peeling, finger pressing, sandpaper abrasion, ultrasonic treatment, and water jet. This work provided a promising large-scale production strategy for the preparation of transparent and hydrophobic cellulose-based films for electronic device protection as well as other emerging flexible electronics.
Collapse
Affiliation(s)
- Qianqian Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Daofa Ying
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yiwen Chen
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center and Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan 430072, China
| | - Hongxia Xie
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Huaran Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Chawla P, Sridhar K, Kumar A, Sarangi PK, Bains A, Sharma M. Production of nanocellulose from corn husk for the development of antimicrobial biodegradable packaging film. Int J Biol Macromol 2023; 242:124805. [PMID: 37182633 DOI: 10.1016/j.ijbiomac.2023.124805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Packaging is a potential way of keeping food products safe from various environmental pollutants, and biological, chemical, & physical deterioration. Hence, the demand for an effective antimicrobial active packaging material is increasing tremendously to improve the shelf-life of food products. Thus, we extracted nanocellulose from corn husks and developed a eugenol-incorporated biodegradable antimicrobial active packaging film. The extracted nanocellulose showed a particle size of 149.67 ± 3.56 nm and an overall surface charge of -20.2 mV ± 0.76 V. The film casting method is one of the promising methods to fabricate biodegradable films using plant-based biopolymers. Therefore, different concentrations of eugenol (0.5-5 % v/v) were incorporated to formulate the functional film (FF0.5-FF5) by employing the casting process. FF exhibited comparable tensile strength as compared to the control film (CF), however, FF5 showed the least tensile strength (85 MPa). Based on the mechanical characterization, the FF3 film sample was further selected for characterization. The morphological evaluation revealed that the surface of the film was smooth and non-porous with reduced moisture content and density. The film exhibited high thermal stability as the degradation occurred above 400 °C, indicating the strong hydrogen bonding between the hydroxyl groups of the film. The Fourier transform infrared spectroscopy analysis revealed the existence of COOH vibration and COC stretching groups of cellulose and eugenol. The antimicrobial studies showed high efficacy against Staphylococcus aureus followed by Salmonella typhmurium, Pseudomonas aeruginosa, and Klebsiella pneumoniae bacteria. Overall, eugenol-incorporated nanocellulose-based biodegradable packaging film could be an excellent candidate as an alternative to active packaging material and provide an opportunity for the efficient utilization of corn husk.
Collapse
Affiliation(s)
- Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Anil Kumar
- Department of Food Science Technology and Processing, Amity University, Mohali 140306, Punjab, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
8
|
The Use of Corn Stover-Derived Nanocellulose as a Stabilizer of Oil-in-Water Emulsion. Polymers (Basel) 2023; 15:polym15030757. [PMID: 36772058 PMCID: PMC9920403 DOI: 10.3390/polym15030757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Agricultural byproducts such as corn stover are widely available sources for preparation of nanocellulose, which is an emerging green chemical with versatile applications. In this study, corn stover-derived nanocellulose was prepared via bleaching, alkaline treatment, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation, and ultrasonication. The as-prepared TEMPO-oxidized cellulose nanofibril (TEMPO-CNF) was characterized by transmission electron microscopy, UV-Vis spectrophotometry, rheometry, and zeta potential measurement. Droplet size, phase behavior, and thermodynamic stability of TEMPO-CNF stabilized oil-in-water emulsions were investigated. Results show that TEMPO-CNF with a width of 4 nm, length of 353 nm, and surface charge of 1.48 mmol/g COO- can be prepared from corn stover. In addition, TEMPO-CNF can be used as an emulsion stabilizer for lemongrass essential oil loaded oil-in-water emulsion. This study is among the first to report that TEMPO-CNF improved the freeze-thaw stability of oil-in-water emulsions stabilized by small molecular weight surfactants (e.g., Tween 80).
Collapse
|
9
|
Neenu KV, Midhun Dominic CD, Begum PMS, Parameswaranpillai J, Kanoth BP, David DA, Sajadi SM, Dhanyasree P, Ajithkumar TG, Badawi M. Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers. Int J Biol Macromol 2022; 209:1745-1759. [PMID: 35469954 DOI: 10.1016/j.ijbiomac.2022.04.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/09/2023]
Abstract
Nanocellulose is the "green magnet" which attracts a wide spectrum of industries towards it due to its availability, biodegradability, and possible smart applications. For the first time, pineapple pomace was being explored as an economic precursor for cellulose nanofibers. Nanofiber isolation was accomplished using a chemo-mechanical method and solution casting was adopted for the development of nanopapers. Moreover, the study examines the structural, optical, crystalline, dimensional, and thermal features of nanofibers isolated using different acid hydrolysis (oxalic acid and sulphuric acid) methods. Fourier-transform infra-red spectroscopy, 13C solid-state nuclear magnetic resonance spectroscopy, and X-ray diffraction analysis indicated the presence of type I cellulose. The transmittance, crystallinity index, and thermal stability of PPNFS (sulphuric acid treated fiber) were greater than PPNFO (oxalic acid treated fiber). The transmission electron microscopy and dynamic light scattering analysis confirmed the nanodimension of PPNFO and PPNFS. While comparing the optical and mechanical properties of nanopapers, PPNFS outperforms PPNFO. The tensile strength of the prepared nanopapers (64 MPa (PPNFO) and 68 MPa (PPNFS)) was found to be high compared to similar works reported in the literature. The prepared nanopaper is proposed to be used for food packaging applications.
Collapse
Affiliation(s)
- K V Neenu
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin 682022, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India.
| | - P M Sabura Begum
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin 682022, India,.
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Bipinbal Parambath Kanoth
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - Deepthi Anna David
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin 682022, India
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Phytochemistry, SRC, Soran University, KRG, Iraq
| | - P Dhanyasree
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin 682022, India
| | - T G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune Pin-411008, India
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| |
Collapse
|
10
|
He Q, Yang Y, Liu Z, Shao D, Jiang D, Xing L, Pan Q, Shan H. Preparation and characterization of cellulose nanocrystals from spent edible fungus substrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2761-2772. [PMID: 34719041 DOI: 10.1002/jsfa.11617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spent edible fungus substrates were identified as potential sources to produce cellulose derivatives, namely purified cellulose and dicarboxyl cellulose nanocrystal (DCNC). Purified celluloses were obtained via chemical treatments and then oxidized by sequential periodate-chlorite without mechanical process. The structural properties of the DCNCs were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). RESULTS XRD results showed that the cellulose I structure was maintained, however, the crystallinity index decreased after oxidation process. The initial pyrolysis temperature of DCNCs ranged from 242 to 344 °C. TEM results revealed that DCNC was rod-shaped with an average length and width of 130.88 nm and 7.3 nm, respectively. The average specific surface area (SSA) was 366.67 m2 g-1 . The carboxyl content was around 3.485 mmol g-1 . Finally, the adsorption capacity for contaminations was 76.98, 126.22, 64.44 and 9.63 mg g-1 for copper ion (Cu2+ ), lead ion (Pb2+ ), chromium (Cr3+ ) and amoxicillin (AMX), respectively. CONCLUSION This work showed a sequentially chemical oxidation for preparing nanocellulose from secondary agricultural waste with many functional applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang He
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Yu Yang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zeng Liu
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, China
- National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongwei Shao
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Donghua Jiang
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Lei Xing
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Qie Pan
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| | - Huizi Shan
- College of Mechanical Engineering, Jiamusi University, Jiamusi, China
| |
Collapse
|
11
|
Qin Q, Li W, Zhang X, Gao B, Han L, Liu X. Feasibility of bionanocomposite films fabricated using capsicum leaf protein and cellulose nanofibers. Food Chem 2022; 387:132769. [PMID: 35397272 DOI: 10.1016/j.foodchem.2022.132769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023]
Abstract
In this study, the feasibility of fabricating protein-based bionanocomposite films (PBBFs) was analysed by applying capsicum leaf protein (CLP) and cellulose nanofiber (CNF) as raw materials. The effects of different amounts of CNF (solid content 2%) on physicochemical and material properties of PBBFs were investigated. The results showed nanoscale CNFs exhibited good interfacial compatibility with CLP. The hydroxyl groups on the CNF surface promoted the association of hydrogen bonds between CLP, glycerol and CNF, which improved the crystal structure and thermal stability of PBBFs. Concurrently, the mechanical properties and hydrophobicity of PBBFs are also enhanced. PBBFs with 60% CNF content have maximum flexibility and hydrophobicity. All PBBFs exhibited ultraviolet barrier performance, indicating that PBBFs had potential application prospects in the development of degradable food packaging materials. The results of the present study can provide a theoretical basis for the efficient utilisation of capsicum planting waste while improving the ecosystem.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenhu Li
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Fahma F, Febiyanti I, Lisdayana N, Sari YW, Noviana D, Yunus M, Kadja GTM, Kusumaatmaja A. Production of Polyvinyl Alcohol–Alginate–Nanocellulose Fibers. STARCH-STARKE 2022. [DOI: 10.1002/star.202100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Farah Fahma
- Department of Agroindustrial Technology Faculty of Agricultural Engineering and Technology IPB University (Bogor Agricultural University) Gedung Fateta, Kampus IPB Darmaga Bogor 16680 Indonesia
| | - Ida Febiyanti
- Department of Agroindustrial Technology Faculty of Agricultural Engineering and Technology IPB University (Bogor Agricultural University) Gedung Fateta, Kampus IPB Darmaga Bogor 16680 Indonesia
| | - Nurmalisa Lisdayana
- Department of Agroindustrial Technology Institut Teknologi Sumatera Jalan Terusan Ryacudu, Way Hui Jati Agung, Lampung Selatan, 35365 Indonesia
| | - Yessie Widya Sari
- Department of Physics Faculty of Mathematics and Natural Sciences IPB University (Bogor Agricultural University) Jl. Meranti, Kampus IPB Darmaga Bogor 16680 Indonesia
| | - Deni Noviana
- Department of Clinic, Reproduction and Pathology Faculty of Veterinary Medicine IPB University (Bogor Agricultesdural University) Jl. Agatis, Kampus IPB Darmaga Bogor 16680 Indonesia
| | - Muchammad Yunus
- Department of Veterinary Parasitology Faculty of Veterinary Medicine Airlangga University Campus C, Jalan Mulyorejo Surabaya 60115 Indonesia
| | - Grandprix Thomryes Marth Kadja
- Division of Inorganic and Physical Chemistry Institut Teknologi Bandung Jalan Ganesha no. 10 Bandung 40132 Indonesia
- Research Center for Nanosciences and Nanotechnology Institut Teknologi Bandung Jalan Ganesha no. 10 Bandung 40132 Indonesia
| | - Ahmad Kusumaatmaja
- Department of Physics Faculty of Mathematics and Natural Sciences Gadjah Mada University Sekip Utara Bulaksumur Yogyakarta 55281 Indonesia
| |
Collapse
|
13
|
Midhun Dominic CD, Raj V, Neenu KV, Begum PMS, Formela K, Prabhu DD, Poornima Vijayan P, Ajithkumar TG, Parameswaranpillai J, Saeb MR. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum). Int J Biol Macromol 2022; 206:92-104. [PMID: 35217088 DOI: 10.1016/j.ijbiomac.2022.02.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/29/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022]
Abstract
This study aims to extract cellulose nanofibers (CNFs) from a sustainable source, millet husk, which is considered as an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted CNFs were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Dynamic Light Scattering (DLS), Energy Dispersive X-ray Spectroscopy (EDX), Thermogravimetry (TG and DTG), Differential scanning calorimetry (DSC), and Solid state 13C nuclear magnetic resonance spectroscopy (solid state 13C NMR). The isolated CNFs show a typical cellulose type-I structure with a diameter of 10-12 nm and a crystallinity index of 58.5%. The appearance of the specific peak at 89.31 ppm in the solid state 13C NMR spectra validates the existence of the type-I cellulose phase in the prepared CNFs. The prepared CNFs had a maximum degradation temperature (Tmax) of 341 °C, that was 31 °C greater than raw millet husk (RMH). The outcome of the study implies that the nanofibers are prominent alternatives for synthetic fibers for assorted potential applications, especially in manufacturing green composites.
Collapse
Affiliation(s)
- C D Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Pin-682013, Kerala, India.
| | - Vandita Raj
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Pin-682013, Kerala, India; Department of Chemistry, PSGR Krishnammal College for Women, Peelamedu, Coimbatore Pin-641004, Tamil Nadu, India
| | - K V Neenu
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - P M Sabura Begum
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Deepak D Prabhu
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Pin-682013, Kerala, India
| | - P Poornima Vijayan
- Department of Chemistry, Sree Narayana College for Women, Kollam Pin-691001, Kerala, India
| | - T G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune Pin-411008, India
| | - Jyotishkumar Parameswaranpillai
- School of Biosciences, Mar Athanasios College for Advanced Studies Tiruvalla (MACFAST), Pathanamthitta, Kerala Pin-689101, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
14
|
Priyangga A, Atmaja L, Santoso M, Jaafar J, Ilbeygi H. Utilization of mesoporous phosphotungstic acid in nanocellulose membranes for direct methanol fuel cells. RSC Adv 2022; 12:14411-14421. [PMID: 35702242 PMCID: PMC9097861 DOI: 10.1039/d2ra01451c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 01/17/2023] Open
Abstract
Nanocellulose (NC) composite membranes containing novel ternary materials including NC, imidazole (Im), and mesoporous phosphotungstic acid (m-PTA) were successfully fabricated by a phase inversion method. The single-particle size of NC was 88.79 nm with a spherical form. A m-PTA filler with a mesopore size of 4.89 nm was also successfully synthesized by a self-assembly method. Moreover, the fabricated membrane NC/Im/m-PTA-5 exhibited the best performances towards its proton conductivity and methanol permeability at 31.88 mS cm−1 and 1.74 × 10−6 cm2 s−1, respectively. The membrane selectivity was 1.83 × 104 S cm−3. A NC/Im/m-PTA membrane was fabricated for direct methanol fuel cell applications.![]()
Collapse
Affiliation(s)
- Arif Priyangga
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo, Surabaya 60111, Indonesia
| | - Lukman Atmaja
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo, Surabaya 60111, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, ITS Sukolilo, Surabaya 60111, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology (AMTEC) Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Hamid Ilbeygi
- ARC Research Hub for Integrated Devices for End-User Analysis at Low Levels (IDEAL), Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
15
|
Hussin NH, Wahab RA, Elias N, Jacob AG, Zainal-Abidin MH, Abdullah F, Sulaiman NJ, Misson M. Electrospun Magnetic Nanocellulose-Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate. MEMBRANES 2021; 11:972. [PMID: 34940473 PMCID: PMC8707156 DOI: 10.3390/membranes11120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
A novel greener MNC/PES membrane was developed through an electrospinning technique for lipase immobilization to catalyze the synthesis of ethyl valerate (EV). In this study, the covalent immobilization of Aspergillus oryzae lipase (AOL) onto an electrospun nanofibrous membrane consisting of magnetic nanocellulose (MNC) and polyethersulfone (PES) to produce EV was statistically optimized. Raman spectroscopy, Fourier-transform infrared spectroscopy: attenuated total reflection, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, thermal gravimetric analysis (TGA), and differential thermal gravimetric (DTG) of MNC/PES-AOL demonstrated that AOL was successfully immobilized onto the fibers. The Taguchi design-assisted immobilization of AOL onto MNC/PES fibers identified that 1.10 mg/mL protein loading, 4 mL reaction volume, 250 rpm stirring rate, and 50 °C were optimal to yield 72.09% of EV in 24 h. The thermal stability of MNC/PES-AOL was improved by ≈20% over the free AOL, with reusability for up to five consecutive esterification cycles while demonstrating an exceptional half-life of 120 h. Briefly, the electrospun MNC/PES fibers that immobilized AOL showed promising applicability in yielding relatively good EV levels. This study suggests that using MNC as fillers in a PES to improve AOL activity and durability for a longer catalytic process could be a viable option.
Collapse
Affiliation(s)
- Nurul Hidayah Hussin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Nursyafiqah Elias
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Adikwu Gowon Jacob
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Department of Applied Chemistry, Federal University Dutsin-Ma (FUDMA), Dutsin-Ma P.M.B 5001, Katsina State, Nigeria
| | - Mohamad Hamdi Zainal-Abidin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
| | - Nurul Jannah Sulaiman
- Department of Bioprocess & Polymer Engineering, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
16
|
Zhang M, Liu Q, Tian S, Zhou X, Liu B, Zhao X, Tang G, Pang A. Facile synthesis of silica composite films with good mechanical property for spectrally broadband antireflection coatings. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cárdenas-Barboza LC, Paredes-Córdoba AC, Serna-Cock L, Guancha-Chalapud M, Torres-León C. Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces. Heliyon 2021; 7:e07988. [PMID: 34568603 PMCID: PMC8449181 DOI: 10.1016/j.heliyon.2021.e07988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Physalis peruviana is marketed without its calyx, which generates byproducts and a decrease in the shelf life of these fruits. The aim of this study was to evaluate the effect of edible pectin-coatings reinforced with nanocellulose from calyx on the physical-chemical and physiological parameters of P. peruviana fruits during refrigerated storage (5 °C) for ten days. The nanocellulose extraction was carried out using a combined extraction method (chemical procedures and ultrasound radiation). The characterization of the fibers showed that the maximum degradation temperatures ranged between 300 and 311 °C. The SEM analysis revealed the presence of fibers after the chemical treatment. The removal of lignin and hemicellulose was validated using Fourier Transform Infra Red (FTIR) spectroscopy. The results showed that the fruits treated with pectin and pectin reinforced with nanocellulose at 0.5 % (w/w) had an adequate visual appearance and showed a minor color change (ΔE of 19.04 and 21.04, respectively) and the highest retention of L∗ during storage. Although the addition of nanocellulose at 0.5% presented the lowest respiratory rate (29.60 mgCO2/kg h), the treatment with pectin offered the least weight loss and showed the highest firmness retention at the end of storage. Thus, the edible pectin-coating may be useful for improving the postharvest quality and storage life of fresh P. peruviana fruit. Nanocellulose from P. peruviana calyces can be used under the concept of a circular economy; although, its use as a reinforcement of pectin showed some limitations.
Collapse
Affiliation(s)
- Liceth Carolina Cárdenas-Barboza
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Andrey Camilo Paredes-Córdoba
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Liliana Serna-Cock
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Marcelo Guancha-Chalapud
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, 760004, Cali, Valle del Cauca, Colombia
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Universidad Autónoma de Coahuila, 27480, Viesca, Coahuila, Mexico
| |
Collapse
|
18
|
Wang H, Ding F, Ma L, Zhang Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100871] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Souza AG, Santos DF, Ferreira RR, Pinto VZ, Rosa DS. Innovative process for obtaining modified nanocellulose from soybean straw. Int J Biol Macromol 2020; 165:1803-1812. [PMID: 33075342 DOI: 10.1016/j.ijbiomac.2020.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
In the present research, soybean straw was used to prepare nanocellulose (NC) via a ball mill, in different milling times (6, 9, and 12 h) and in-situ modified with an anionic surfactant. NCs were characterized for their chemical structure, surface composition, dimension and stability, morphology, crystalline structure, and thermal stability. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results indicated a cellulosic structure for NCs and a physical interaction due to the electronic attractions between nanocellulose hydroxyls and surfactant end chain groups. The dynamic light scattering, Zeta potential, and transmission electron microscopy indicated that the in situ modified samples showed smaller sizes and good electrostatic stability. Besides, while ball mill resulted in nanofibers, the in situ modified-NC showed a nanocrystal shape, indicating that the surfactant alters the milling process and cellulose scale reduction. The modified-NC showed lower crystallinity and crystal size than unmodified nanocelluloses due to the surfactant chains' addition and influence during the milling process. The modified-NC showed slightly superior thermal stability. The NC-12S showed smaller particle sizes, high electrostatic, and thermal stability and indicated that 12 h is adequate to prepare modified nanocellulose via in situ modification. The prepared samples could be potentially used as coatings, emulsifiers, and nanocomposites reinforcing agents.
Collapse
Affiliation(s)
- A G Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil
| | - D F Santos
- Universidade Federal da Fronteira Sul (UFFS) - Laranjeiras do Sul, PR, Rodovia BR 158 - Km 405, CEP: 85301-970, Brazil
| | - R R Ferreira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil
| | - V Z Pinto
- Universidade Federal da Fronteira Sul (UFFS) - Laranjeiras do Sul, PR, Rodovia BR 158 - Km 405, CEP: 85301-970, Brazil.
| | - D S Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil.
| |
Collapse
|