1
|
Ahmed SA, Jordan RL, Isseroff RR, Lenhard JR. Potential Synergy of Fluoxetine and Antibacterial Agents Against Skin and Soft Tissue Pathogens and Drug-Resistant Organisms. Antibiotics (Basel) 2024; 13:1165. [PMID: 39766555 PMCID: PMC11672584 DOI: 10.3390/antibiotics13121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The feasibility of repurposing selective serotonin reuptake inhibitors as adjunctive antibacterial agents is an area of current investigation. We sought to evaluate if fluoxetine will achieve synergistic killing with relevant antibacterial drugs against skin and soft tissue pathogens and multidrug-resistant pathogens. Methods: The MIC of fluoxetine was determined using broth microdilution for a diverse isolate collection of 21 organisms. Checkerboard experiments were then conducted using fluoxetine and clinically relevant antibacterial drugs. If fluoxetine and an anti-infective agent achieved synergy denoted by a fractional inhibitory concentration index ≤ 0.5, then the combination was further evaluated in 24 h time-killing experiments. Synergy in time-killing experiments was defined as a ≥2 log10 CFU/mL reduction in fluoxetine combined with an antibacterial agent at any point in the experiment in comparison to whichever agent in the combination resulted in the lowest bacterial counts individually. Results: The fluoxetine MICs ranged from 64 to 128 mcg/mL for Gram-positive isolates and 8-512 mcg/mL for Gram-negative organisms. Against Gram-positive isolates, vancomycin, linezolid, clindamycin, and gentamicin failed to achieve synergy in checkerboard experiments. Levofloxacin and fluoxetine were the only combination that demonstrated synergy against a Gram-positive pathogen in both checkerboard and time-killing experiments (1/6 isolates, 16.7%). Against Gram-negative organisms, the most promising combination was fluoxetine and polymyxin B, which achieved synergistic killing in both checkerboard experiments and time-killing experiments in 12/15 isolates (80%). In comparison, fosfomycin and meropenem achieved synergy in both experiments against 6/15 (40%) and 3/15 (20%) Gram-negative isolates, respectively. Conclusions: The combination of fluoxetine and polymyxin B may be a potential strategy for combatting difficult-to-treat Gram-negative pathogens.
Collapse
Affiliation(s)
- Samar A. Ahmed
- Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (S.A.A.); (R.L.J.)
- Clinical Pharmacy Department, Shefa’a Al-Orman Comprehensive Cancer Center, Luxor 85863, Egypt
| | - Rondelle L. Jordan
- Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (S.A.A.); (R.L.J.)
| | | | - Justin R. Lenhard
- Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (S.A.A.); (R.L.J.)
| |
Collapse
|
2
|
Kareemi AF, Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf B Biointerfaces 2024; 238:113883. [PMID: 38615389 DOI: 10.1016/j.colsurfb.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Growing demand for highly effective, site-specific delivery of pharmaceuticals and nutraceuticals using nano-sized carriers has prompted increased scrutiny of carrier biocompatibility and biodegradability. To address these concerns, biodegradable natural polymers have emerged as a transformative domain, offering non-toxic, precisely targetable carriers capable of finely modulating cargo pharmacokinetics while generating innocuous decomposition by-products. This comprehensive review illuminates the emergence of polysaccharide-based nanoparticulate drug delivery systems. These systems establish an interactive interface between drug and targeted organs, guided by strategic modifications to polysaccharide backbones, which facilitate the creation of morphologically, constitutionally, and characteristically vibrant nanostructures through various fabrication routes, underpinning their pivotal role in biomedical applications. Advancements crucial to enhancing polysaccharide-based drug delivery, such as surface modifications and bioinspired modifications for enhanced targeting, and stimuli-responsive release, strategies to overcome biological barriers, enhance tumor penetration, and optimize therapeutic outcomes are highlighted. This review also examines some potent challenges, and the contemporary way out of them, and discusses future perspectives in the field.
Collapse
Affiliation(s)
- Asra Fatimah Kareemi
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India
| | - Sweta Likhitkar
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India.
| |
Collapse
|
3
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Antibacterial and Antibiofilm Efficacy of Repurposing Drug Hexestrol against Methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 2023; 313:151578. [PMID: 37001448 DOI: 10.1016/j.ijmm.2023.151578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
There has been an explosion in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) because of the indiscriminate use of antibiotics. In this study, we repurposed hexestrol (HXS) as an antibacterial agent to fight planktonic and biofilm-related MRSA infections. HXS is a nonsteroidal synthetic estrogen that targets estrogen receptors (ERα and ERβ) and has been used as a hormonal antineoplastic agent. In our work, the minimum inhibitory concentrations (MICs) were determined using the antimicrobial susceptibility of MSSA and MRSA strains. Anti-biofilm activity was evaluated using biofilm inhibition and eradication assays. Biofilm-related genes were analyzed with or without HXS treatment using RTqPCR analysis of S. aureus. HXS was tested using the checkerboard dilution assay to identify antibiotics that may have synergistic effects. Measurement of ATP and detection of ATPase allowed the determination of bacterial energy metabolism. As shown in the results, HXS showed effective antimicrobial activity against S. aureus, including both type strains and clinical isolations, with MICs of 16 µg/mL. Sub-HXS strongly inhibited the adhesion of S. aureus. The content of extracellular polymeric substances (EPS) and the relative transcription levels of eno, sacC, clfA, pls and fnbpB were reduced after HXS treatment. HXS showed antibacterial effects against S. aureus and synergistic activity with aminoglycosides by directly interfering with cellular energy metabolism. HXS inhibits adhesion and biofilm formation and eradicates biofilms formed by MRSA by reducing the expression of related genes. Furthermore, HXS increases the susceptibility of aminoglycosides against MRSA. In conclusion, HXS is a repurposed drug that may be a promising therapeutic option for MRSA infection.
Collapse
|
4
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
5
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
6
|
Liu S, She P, Li Z, Li Y, Yang Y, Li L, Zhou L, Wu Y. Insights into the antimicrobial effects of ceritinib against Staphylococcus aureus in vitro and in vivo by cell membrane disruption. AMB Express 2022; 12:150. [DOI: 10.1186/s13568-022-01492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractAccording to a 2019 report from the Centers of Disease Control and Prevention (CDC), methicillin-resistant Staphylococcus aureus (MRSA) was listed as one of the “serious threats” that had become a global public challenge in hospitals and community. Biofilm-associated infections and refractory persisters of S. aureus also impede the effectiveness of conventional antibiotics that have greatly increased difficulty in clinical therapy. There is an urgent need to develop new antimicrobials with antibiofilm and anti-persister capacities, and drug repurposing is the most effective and most economical solution to the problem. The present study profiles the antimicrobial activity of ceritinib, a tyrosine kinase inhibitor, against S. aureus in vitro and in vivo. We investigated the antimicrobial efficacy of ceritinib against planktonic and persistent S. aureus by a time-killing kinetics assay. Then, antibiofilm effect of ceritinib was assessed by crystal violet staining and laser confocal microscope observation. Ceritinib showed biofilm inhibition and mature biofilm eradication, and possesses robust bactericidal activity against S. aureus persisters. We also evaluated antimicrobial efficacy in vivo using a subcutaneous abscess infection model. Ceritinib ameliorated infection in a subcutaneous abscess mouse model and only showed negligible systemic toxicity in vivo. Mechanism exploration was conducted by transmission electron microscopy, fluorescently labeled giant unilamellar vesicle assays, and a series of fluorescent dyes. In conclusion, we find ceritinib represents potential bactericidal activity against MRSA by disrupting cell membrane integrity and inducing reactive oxygen species production, suggesting ceritinib has the potential to treat MRSA-related infections.
Collapse
|
7
|
Kanth S, Puttaiahgowda YM. CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. STARCH-STARKE 2022. [DOI: 10.1002/star.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shreya Kanth
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
8
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Saravanakumar K, Sriram B, Sathiyaseelan A, Mariadoss AVA, Hu X, Han KS, Vishnupriya V, MubarakAli D, Wang MH. Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int J Biol Macromol 2021; 182:1409-1418. [PMID: 33965484 DOI: 10.1016/j.ijbiomac.2021.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The present work reported synthesis, characterization, and biocompatibility of starch encapsulated silver nanoparticles (St-PF-AgNPs) and their antibacterial activity. The synthesis of St-PF-AgNPs involved in two steps: (i) synthesis of the biogenic silver nanoparticles using the fungal extracts (PF-AgNPs); and, (ii) encapsulation of starch in PF-AgNPs (St-PF-AgNPs). The surface plasmon resonance was found at 420 nm for the PF-AgNPs while it was at 260 and 420 nm for the St-PF-AgNPs. FTIR spectrum demonstrated the capping and encapsulation of the fungal extracts and starch in PF-AgNPs and St-PF-AgNPs. The XRD and TEM-EDS confirmed the crystalline nature, spherical-shaped , and polydispersed- PF-AgNPs and St-PF-AgNPs with strong signals of Ag. The St-PF-AgNPs showed a Z-average size of 115.2 d.nm and zeta potential of -17.8 (mV) as indicated by DLS and zeta potentials. The cytotoxicity results demonstrated higher toxicity of PF-AgNPs than St-PF-AgNPs in HEK293 cells. The antibacterial activity of St-PF-AgNPs were higher than PF-AgNPs in S. aureus. Overall, this work concluded that the starch encapsulation significantly increased the antibacterial activity of PF-AgNPs and this opens a new avenue for the treatment of bacterial infections through the sustained release of PF-AgNPs to target pathogenic bacterial cells.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bhaskaran Sriram
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | - Xiaowen Hu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ki-Seok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Veeraraghavan Vishnupriya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
10
|
Starch-based magnetic nanocomposite for targeted delivery of hydrophilic bioactives as anticancer strategy. Carbohydr Polym 2021; 264:118017. [PMID: 33910740 DOI: 10.1016/j.carbpol.2021.118017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Magnetic nanocomposites were synthesized for the targeted delivery of hydrophilic bioactives through guidance generated by a magnetic field. Superparamagnetic iron oxide nanoparticles (SPIONs) were used to generate hydroxyethyl starch magnetic nanocapsules (HES MNCs). This synthesis allowed the co-encapsulation of oncocalyxone A (onco A) and surface-modified magnetite nanoparticles (Fe3O4@citrate) into the same nanostructure. The synthesized nanocapsules exhibited a core-shell morphology, with an average diameter of 143 nm. This nanocomposite showed potential anticancer activity (IC50) against four human tumor cell lines: glioblastoma SNB-19 (1.010 μgmL-1), colon carcinoma HCT-116 (2.675 μgmL-1), prostate PC3 (4.868 μgmL-1), and leukemia HL-60 (2.166 μgmL-1). Additionally, in vivo toxicity and locomotor activity were evaluated in a zebrafish (Danio rerio) model. The nanocomposite exhibited in vitro cytotoxicity, prolonged drug release profile and also responded to an applied magnetic field, representing a versatile compound with perspectives for highest concentration of different hydrophilic bioactives in a target tissue through magnetic vectorization.
Collapse
|
11
|
Xyloglucan-based hybrid nanocomposite with potential for biomedical applications. Int J Biol Macromol 2020; 168:722-732. [PMID: 33232700 DOI: 10.1016/j.ijbiomac.2020.11.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022]
Abstract
Natural polymer-based hybrid nanocomposites have been proposed as one of the most promising tools for biomedical applications, including disease treatment and diagnosis procedures. Xyloglucan nanocapsules can simultaneously load magnetic iron oxide nanoparticles and bioactive for a specific tissue, reducing the processes of degradation and metabolic inactivation of molecules with biological activity. In this work, magnetic nanocapsules of xyloglucan loaded with hydrophilic sulfated quercetin (MNXQ_SO3) were successfully synthesized by inverse miniemulsion process through interfacial polymerization. The polymeric shell formation of nanocapsules was evidenced by Fourier Transform Infrared spectroscopy and Transmission Electron Microscopy. The ferrofluid (Fe3O4@PAAS) incorporated into the xyloglucan nanocapsules was synthesized by hydrothermal method, using polyacrylic acid sodium salt as coating. Dynamic Light Scattering technique confirmed the nanomeric dimensions (202.3 nm) and the good colloidal stability (-40.2 mV) of MNXQ_SO3. The saturation magnetization analyses pointed out the superparamagnetic behavior of Fe3O4@PAAS (48 emu/g) and MNXQ_SO3 (4.2 emu/g). MNXQ_SO3 was able to modify the release profile of sulfated quercetin (67%) when compared to the free bioactive (100%), exhibiting a release profile compatible with the zero-order kinetic model. The results showed that the development of MNXQ_SO3 presents a new perspective for biomedical applications, including studies of targeted drug delivery.
Collapse
|