1
|
Ajayan A, Rajan L, Prakash S, Ismail YA. Macromolecular sensing motors from conducting polymers: Polyaniline/methylcellulose composites as stable current sensing supercapacitors. Int J Biol Macromol 2024; 279:135312. [PMID: 39236960 DOI: 10.1016/j.ijbiomac.2024.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Sensing motors and supercapacitors are pivotal in empowering smart systems, honing energy management, and facilitating the seamless integration of responsive electronics. Harnessing the electrochemistry of methylcellulose-polyaniline (MC/PANI) composites, this research delves into their potential applications as reactive current sensing supercapacitors with single connectivity. The electrochemical traits of pristine polyaniline (PANI) and MC/PANI composites were analyzed and assessed for their potential applications in sensors and energy storage devices. With a specific capacitance of 300Fg-1, the MC/PANI_B3 composite-based device retained 87.01 % capacitance after 2000 cycles. Besides, based on electrical energy as the sensing parameter, the composite exhibited augmented cathodic and anodic current sensitivity of 8.77 mJmA-1 and -8.86 mJmA-1, respectively. The ameliorated supercapacitor and current sensing parameters of MC/PANI_B3 are ascribed to the percolation threshold content of the conducting phase, which is endowed with optimal hydrogen bond-mediated interactions with methylcellulose (MC), thus confers an expanded chain conformation.
Collapse
Affiliation(s)
- Athira Ajayan
- Advanced Materials Research Center, Department of Chemistry, University of Calicut, Thenjipalam 673635, India
| | - Lijin Rajan
- Advanced Materials Research Center, Department of Chemistry, University of Calicut, Thenjipalam 673635, India
| | - Sivakrishna Prakash
- Advanced Materials Research Center, Department of Chemistry, University of Calicut, Thenjipalam 673635, India
| | - Yahya A Ismail
- Advanced Materials Research Center, Department of Chemistry, University of Calicut, Thenjipalam 673635, India.
| |
Collapse
|
2
|
Li H, Li Y, Zhu S, Li Y, Zada I, Li Y. Recent advances in biopolymers-based carbon materials for supercapacitors. RSC Adv 2023; 13:33318-33335. [PMID: 38025848 PMCID: PMC10646438 DOI: 10.1039/d3ra06179e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Supercapacitors as potential candidates for novel green energy storage devices demonstrate a promising future in promoting sustainable energy supply, but their development is impeded by limited energy density, which can be addressed by developing high-capacitance electrode materials with efforts. Carbon materials derived from biopolymers have received much attention for their abundant reserves and environmentally sustainable nature, rendering them ideal for supercapacitor electrodes. However, the limited capacitance has hindered their widespread application, resulting in the proposal of various strategies to enhance the capacity properties of carbon electrodes. This paper critically reviewed the recent research progress of biopolymers-based carbon electrodes. The advances in biopolymers-based carbon electrodes for supercapacitors are presented, followed by the strategies to improve the capacitance of carbon electrodes which include pore engineering, doping engineering and composite engineering. Furthermore, this review is summarized and the challenges of biopolymer-derived carbon electrodes are discussed. The purpose of this review is to promote the widespread application of biopolymers in the domain of supercapacitors.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yanyu Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yulong Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Imran Zada
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
3
|
Villarreal-Rueda J, Zapata-Benabithe Z, Posada L, Martínez E, Herrera S, López S, Sobrido ABJ, Castro CI. Bacterial Nanocellulose from Komagataeibacter Medellinensis in Fique Juice for Activated Carbons Production and Its Application for Supercapacitor Electrodes. Polymers (Basel) 2023; 15:polym15071760. [PMID: 37050374 PMCID: PMC10096803 DOI: 10.3390/polym15071760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
This paper presents the results obtained from the chemical activation of bacterial nanocellulose (BCN) using fique juice as a culture medium. BNC activation (BNCA) was carried out with H3PO4 and KOH at activation temperatures between 500 °C to 800 °C. The materials obtained were characterized morphologically, physicochemically, superficially, and electrochemically, using scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), the physisorption of gases N2 and CO2 at 77 K and 273 K, respectively, cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy (EIS). The samples activated with H3PO4 presented specific surface areas (SBET) around 780 m2 g−1, while those activated with KOH values presented specific surface areas between 680 and 893 m2 g−1. The XPS analysis showed that the PXPS percentage on the surface after H3PO4 activation was 11 wt%. The energy storage capacitance values ranged between 97.5 F g−1 and 220 F g−1 by EIS in 1 M H2SO4. The samples with the best electrochemical performance were activated with KOH at 700 °C and 800 °C, mainly due to the high SBET available and the accessibility of the microporosity. The capacitance of BNCAs was mainly improved by electrostatic effects due to the SBET rather than that of pseudocapacitive ones due to the presence of phosphorus heteroatoms.
Collapse
Affiliation(s)
- Juliana Villarreal-Rueda
- Semillero de Termofluidos y Conversión de la Energía, Ingeniería Química, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Zulamita Zapata-Benabithe
- Grupo de Energía y Termodinámica, Ingeniería Química, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Laia Posada
- Grupo de Investigación sobre Nuevos Materiales, Ingeniería en Nanotecnología, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Estefanía Martínez
- Grupo de Investigación sobre Nuevos Materiales, Ingeniería en Nanotecnología, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Sara Herrera
- Grupo de Investigación sobre Nuevos Materiales, Ingeniería en Nanotecnología, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Stiven López
- Grupo de Investigación sobre Nuevos Materiales, Ingeniería en Nanotecnología, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Ana B. J. Sobrido
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Cristina I. Castro
- Grupo de Investigación sobre Nuevos Materiales, Ingeniería en Nanotecnología, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| |
Collapse
|
4
|
Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light. Processes (Basel) 2022. [DOI: 10.3390/pr11010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since conventional techniques are ineffective for NO removal at low concentrations, photocatalysis has become attractive in this regard, recently. However, in practice, photocatalytic NO removal has drawbacks such as limited light absorption and the proclivity of producing toxic by-products. To address these issues, novel defective Bi/Bi3NbO7 structures with good porosity were fabricated by a solvothermal method and used for enhanced photocatalytic NO removal under visible light irradiation. The morphological and structural properties of the prepared materials were comprehensively analyzed. The optimal photocatalytic activity of pore-defective Bi/Bi3NbO7 for NO removal was 60.3%, when the molar ratios of urea and Bi(NO)3•5H2O to pristine Bi3NbO7 were 1:25 and 1:2, respectively, under the following operational conditions: NO concentration of 700 ppb, catalyst dosage of 50 mg and irradiation time of 14 min. The induced defects and the surface plasmon resonance (SPR) effect of Bi nanodots made remarkable contributions to improving the photocatalytic NO removal as well as inhibiting the toxic byproduct NO2. The photocatalytic NO removal pathway over the prepared photocatalysts was further mechanistically clarified taking advantage of EPR results and scavenging experiments. Considering the increased NO generation in the atmosphere, this work may provide novel insights for designing effective porous photocatalysts to treat gaseous toxic pollutants.
Collapse
|
5
|
Wang Y, Lu C, Cao X, Wang Q, Yang G, Chen J. Porous Carbon Spheres Derived from Hemicelluloses for Supercapacitor Application. Int J Mol Sci 2022; 23:ijms23137101. [PMID: 35806106 PMCID: PMC9267052 DOI: 10.3390/ijms23137101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
With the increasing demand for dissolving pulp, large quantities of hemicelluloses were generated and abandoned. These hemicelluloses are very promising biomass resources for preparing carbon spheres. However, the pore structures of the carbon spheres obtained from biomass are usually poor, which extensively limits their utilization. Herein, the carbon microspheres derived from hemicelluloses were prepared using hydrothermal carbonization and further activated with different activators (KOH, K2CO3, Na2CO3, and ZnCl2) to improve their electrochemical performance as supercapacitors. After activation, the specific surface areas of these carbon spheres were improved significantly, which were in the order of ZnCl2 > K2CO3 > KOH > Na2CO3. The carbon spheres with high surface area of 2025 m2/g and remarkable pore volume of 1.07 cm3/g were achieved, as the carbon spheres were activated by ZnCl2. The supercapacitor electrode fabricated from the ZnCl2-activated carbon spheres demonstrated high specific capacitance of 218 F/g at 0.2 A/g in 6 M KOH in a three-electrode system. A symmetric supercapacitor was assembled in 2 M Li2SO4 electrolyte, and the carbon spheres activated by ZnCl2 showed excellent electrochemical performance with high specific capacitance (137 F/g at 0.5 A/g), energy densities (15.4 Wh/kg), and good cyclic stability (95% capacitance retention over 2000 cycles).
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Chengshuai Lu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Xuefei Cao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (X.C.); (J.C.); Tel.: +86-010-62336903 (X.C.)
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.W.); (C.L.); (Q.W.); (G.Y.)
- Correspondence: (X.C.); (J.C.); Tel.: +86-010-62336903 (X.C.)
| |
Collapse
|
6
|
Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications. NANOMATERIALS 2022; 12:nano12111828. [PMID: 35683684 PMCID: PMC9182373 DOI: 10.3390/nano12111828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior performance as an alternative to petroleum-based plastics. Emerging nanomaterials derived from abundant natural resources have received considerable attention as candidates to replace petroleum-based synthetic polymers. As renewable materials from biomass, cellulose nanocrystals (CNCs) nanomaterials exhibit unique physicochemical properties, low cost, biocompatibility and biodegradability. Among a plethora of applications, CNCs have become proven nanomaterials for energy applications encompassing energy storage devices and supercapacitors. This review highlights the recent research contribution on novel CNC-conductive materials and CNCs-based nanocomposites, focusing on their synthesis, surface functionalization and potential applications as supercapacitors (SCs). The synthesis of CNCs encompasses various pretreatment steps including acid hydrolysis, mechanical exfoliation and enzymatic and combination processes from renewable carbon sources. For the widespread applications of CNCs, their derivatives such as carboxylated CNCs, aldehyde-CNCs, hydride-CNCs and sulfonated CNC-based materials are more pertinent. The potential applications of CNCs-conductive hybrid composites as SCs, critical technical issues and the future feasibility of this endeavor are highlighted. Discussion is also extended to the transformation of renewable and low-attractive CNCs to conductive nanocomposites using green approaches. This review also addresses the key scientific achievements and industrial uses of nanoscale materials and composites for energy conversion and storage applications.
Collapse
|
7
|
dos Reis GS, de Oliveira HP, Larsson SH, Thyrel M, Claudio Lima E. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:424. [PMID: 33562379 PMCID: PMC7914838 DOI: 10.3390/nano11020424] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Cheap and efficient carbon electrodes (CEs) for energy storage systems (ESS) such as supercapacitors (SCs) and batteries are an increasing priority issue, among other things, due to a globally increasing share of intermittent electricity production (solar and wind) and electrification of transport. The increasing consumption of portable and non-portable electronic devices justifies research that enables environmentally and economically sustainable production (materials, processing techniques, and product design) of products with a high electrochemical performance at an acceptable cost. Among all the currently explored CEs materials, biomass-based activated carbons (AC) present enormous potential due to their availability and low-cost, easy processing methods, physicochemical stability, and methods for self-doping. Nitrogen doping methods in CEs for SCs have been demonstrated to enhance its conductivities, surface wettability, and induced pseudocapacitance effect, thereby delivering improved energy/power densities with versatile properties. Herein, a short review is presented, focusing on the different types of natural carbon sources for preparing CEs towards the fabrication of SCs with high electrochemical performance. The influences of ACs' pore characteristics (micro and mesoporosity) and nitrogen doping on the overall electrochemical performance (EP) are addressed.
Collapse
Affiliation(s)
- Glaydson Simões dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | | | - Sylvia H. Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| |
Collapse
|
8
|
Abstract
Nanocellulose (NC) is a biomaterial with growing interest in the field of nanocomposites and sustainable materials. NC has various applications including biodegradable materials, reinforcing agents, packaging films, transpiring membranes and medical devices. Among the many applications, the use of NC functionalized with organic and inorganic groups has found wide use as a catalyst in chemical transformations. The goal of this review is to collect the current knowledge on its catalytic applications for chemical groups conversion. We have chosen to organize the manuscript according to subdivision of NC into Bacterial Nanocellulose (BNC), Cellulose Nanocrystals (CNCs), and Cellulose Nanofibers (CNFs) and their role as inorganic- and organic-functionalized NC-catalysts in organic synthesis. However, in consideration of the fact that the literature on this field is very extensive, we have decided to focus our attention on the scientific productions of the last five years.
Collapse
|