1
|
Tian M, Yang A, Lu Q, Zhang X, Liu G, Liu G. Study on the mechanism of Baihe Dihuang decoction in treating menopausal syndrome based on network pharmacology. Medicine (Baltimore) 2023; 102:e33189. [PMID: 37335709 DOI: 10.1097/md.0000000000033189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Menopausal syndrome (MS) refers to a series of symptoms with autonomic nervous system dysfunction caused by decreased sex hormones before and after menopause. Baihe Dihuang (BHDH) decoction positively affects MS, but its mechanism remains unclear. This study aimed to reveal the underlying mechanism through network pharmacology. The components of the BHDH Decoction were found through HERB, while corresponding targets were obtained from the HERB, Drug Bank, NPASS, Targetnet, and Swisstarget databases. The MS targets were obtained from GeneCards and OMIM. STRING was used to construct the protein-protein interaction networks. OmicShare tools were used for Gene Ontology and Kyoto encyclopedia of genes and genomes analyses. Finally, Autodock Vina 1.1.2 software (https://vina.scripps.edu/downloads/) was used for molecular alignment to verify whether the main active ingredients and key targets had good binding activity. We screened out 27 active ingredients and 251 effective targets of BHDH Decoction, 3405 MS-related targets, and 133 intersection targets between BHDH Decoction and MS. Protein-protein interaction network identified tumor protein P53, Serine/threonine-protein kinase AKT, epidermal growth factor receptor, Estrogen Receptor 1, and jun proto-oncogene as critical targets. Gene ontology analysis showed that these targets were mainly involved in the cellular response to chemical stimulus, response to oxygen-containing compound, cellular response to endogenous stimulus, response to an organic substance, and response to chemical, etc. Kyoto encyclopedia of genes and genomes pathways were mainly enriched in endocrine resistance, pathways in cancer, and the ErbB signaling pathway, etc. Molecular docking results showed that emodin and stigmasterol are strongly associated with Serine/threonine-protein kinase AKT, Estrogen Receptor 1, epidermal growth factor receptor, sarcoma gene, and tumor protein P53. This study preliminarily revealed the multi-component, multi-target, and multi-channel mechanism of BHDH Decoction in treating MS. It provides a reference for in vitro and in vivo research and clinical application of BHDH Decoction in the treatment of MS.
Collapse
Affiliation(s)
- Mingmin Tian
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Anming Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Qinwei Lu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xin Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Guangjie Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Gaofeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
2
|
Zhang Y, Chen Y, Bai X, Cheng G, Cao T, Dong L, Zhao J, Zhang Y, Qu H, Kong H, Zhao Y. Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules 2023; 28:molecules28041830. [PMID: 36838814 PMCID: PMC9962818 DOI: 10.3390/molecules28041830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
With the extension of the human life span and the increasing pressure of women's work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases.
Collapse
Affiliation(s)
- Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyou Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| |
Collapse
|
3
|
Network Pharmacology and Molecular Docking Analysis of the Mechanism Underlying Yikunyin's Therapeutic Effect on Menopausal Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7302419. [PMID: 35707470 PMCID: PMC9192326 DOI: 10.1155/2022/7302419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
Abstract
Objective Yikunyin is an empirical prescription that exhibits good efficacy in the clinical treatment of menopausal syndrome; however, its underlying mechanism remains unclear. This study investigates the mechanism implicated in the therapeutic effect of Yikunyin by identifying its hub genes, central pathways, and key active ingredients. Method The active ingredients and targets of Yikunyin were obtained from the Traditional Chinese Medicine Systems Pharmacology database, whereas the targets related to menopausal syndrome were obtained from GeneCards, PharmGKB, Therapeutic Target Database (TTD), and Comparative Toxicogenomics Database (CTD). To reveal the pharmacological mechanism, the component-target and the intersecting protein-protein interaction (PPI) networks were constructed, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Finally, molecular docking was carried out to assess the strength of binding between the key active ingredients and key targets. Results A total of 418 targets and 121 active ingredients were identified in Yikunyin. The intersection of Yikunyin's 418 targets with the 2822 targets related to menopausal syndrome shows that there are 247 common targets that can be considered potential targets of Yikunyin in the treatment of menopausal syndrome. The topology analysis of the constructed PPI network conducted using the Cytoscape software shows that there are 15 hub genes implicated in the therapeutic effect of Yikunyin: AKT1, PRKCA, TLR9, CXCL10, PRKCD, PARP1, ABCB1, TP53, CAV1, MAPK8, PPARA, GRB2, EGFR, IL-6, and JAK2. Moreover, the key active components acting on these genes are paeoniflorin, luteolin, quercetin, beta-sitosterol, and kaempferol. GO and KEGG analyses indicate that Yikunyin can treat menopausal syndrome by regulating cellular response to chemical stress (GO:0062197), cellular response to oxidative stress (GO:0034599), phosphatase binding (GO:0019902), cytokine receptor binding (GO:0005126), PI3K-Akt signaling (hsa04151), lipid and atherosclerosis (hsa05417), and hepatitis B (hsa05161). Finally, the results of molecular docking suggest that the key active ingredients and key targets can bind well, with binding energies of less than −5 kJ/mol. Conclusion The research conducted herein reveals that Yikunyin treats menopausal syndrome by targeting AKT1 and IL-6 and by regulating the PI3K-Akt signaling pathway. Moreover, it provides a new idea for understanding the therapeutic effects of traditional Chinese medicines.
Collapse
|
4
|
Yu C, Hong SH, Lee JH, Jung KK, Oh JH, Jeong J, Kwon H, Kang JK, Yang JY. Comparative sub-chronic toxicity studies in rats of two indistinguishable herbal plants, Cynanchum wilfordii (Maxim.) Hemsley and Cynanchum auriculatum Royle ex Wight. Food Sci Biotechnol 2022; 31:759-766. [PMID: 35646417 PMCID: PMC9133291 DOI: 10.1007/s10068-022-01072-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Sub-chronic toxicity studies using rats have been conducted for Cynanchum wilfordii (Maxim.) Hemsley (CW) and Cynanchum auriculatum Royle ex Wight (CA). CW water extract didn't show any adverse effects whereas administering CW powder decreased body weights in complication with decreased food consumptions. In the case of CA water extract, triglyceride and absolute/relative liver weights were elevated and vacuolation was observed in liver. Treated CA powder in male rats increased alanine aminotransferase and aspartate aminotransferase and induced single cell necrosis and multinucleated hepatocyte in liver. As for female rats, increased absolute/relative weights and hypertrophy/vacuolation in adrenal glands and vacuolation in ovaries were observed when administered CA powder. In conclusion, no observed adverse effect level (NOAEL) of CW water extract was over 5000 mg/kg/day, while NOAEL of CW powder was 700 mg/kg/day for female and 150 mg/kg/day for male. In case of CA, NOAEL of water extract was 1500 mg/kg/day for male and 2000 mg/kg/day for female, while NOAEL of powder was 150 mg/kg/day for both gender. To the best of our knowledge, this is the first sub-chronic toxicity study on the adverse effects, target organs and its dose levels of C. wilfordii (Maxim.) Hemsley and C. auriculatum Royle ex Wight following GLP protocols.
Collapse
Affiliation(s)
- Changwoo Yu
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - So-Hye Hong
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Jin Hee Lee
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Ki Kyung Jung
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Jae-Ho Oh
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Jayoung Jeong
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - HoonJeong Kwon
- Department of Food and Nutrition, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
- Research Institute of Human Ecology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Jong-Koo Kang
- Biotoxtech Co., Ltd., 53, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungchcengbuk-do 28115 Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungchengbuk-do 28644 Republic of Korea
| | - Jun-Young Yang
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| |
Collapse
|
5
|
Rodríguez-Landa JF. Considerations of Timing Post-ovariectomy in Mice and Rats in Studying Anxiety- and Depression-Like Behaviors Associated With Surgical Menopause in Women. Front Behav Neurosci 2022; 16:829274. [PMID: 35309685 PMCID: PMC8931748 DOI: 10.3389/fnbeh.2022.829274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
|
6
|
Wang L, Cai F, Zhao W, Tian J, Kong D, Sun X, Liu Q, Chen Y, An Y, Wang F, Liu X, Wu Y, Zhou H. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current Research and Prospects. Molecules 2021; 26:7065. [PMID: 34885647 PMCID: PMC8658831 DOI: 10.3390/molecules26237065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
Cynanchum auriculatum Royle ex Wight. (CA), Cynanchum bungei Decne. (CB) and Cynanchum wilfordii (Maxim.) Hemsl. (CW) are three close species belonging to the Asclepiadaceous family, and their dry roots as the bioactive part have been revealed to exhibit anti-tumor, neuroprotection, organ protection, reducing liver lipid and blood lipid, immunomodulatory, anti-inflammatory, and other activities. Until 2021, phytochemistry investigations have uncovered 232 compounds isolated from three species, which could be classified into C21-steroids, acetophenones, terpenoids, and alkaloids. In this review, the morphology characteristics, species identification, and the relationship of botany, extraction, and the separation of chemical constituents, along with the molecular mechanism and pharmacokinetics of bioactive constituents of three species, are summarized for the first time, and their phytochemistry, pharmacology, and clinical safety are also updated. Moreover, the direction and limitation of current research on three species is also discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Fujie Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Xiaohui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Qing Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.W.); (F.C.); (W.Z.); (J.T.); (D.K.); (X.S.); (Q.L.); (Y.C.); (Y.A.); (F.W.); (X.L.)
| |
Collapse
|