1
|
Li Y, Yang J, Sun L, Liu B, Li H, Peng L. Crosslinked fish scale gelatin/alginate dialdehyde functional films incorporated with carbon dots derived from pomelo peel waste for active food packaging. Int J Biol Macromol 2023; 253:127290. [PMID: 37820915 DOI: 10.1016/j.ijbiomac.2023.127290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
A multifunctional and environmentally friendly composite film was developed by incorporating pomelo peel-derived carbon dots (PCDs) into a fish scale gelatin (FSG)/alginate dialdehyde (ADA) biopolymer matrix. ADA was used to reinforce the physicomechanical properties of the FSG film via Schiff base crosslinking. PCDs with strong antioxidant and antimicrobial activities were synthesized via a hydrothermal method. The effect of various PCDs content on the surface morphological, physicochemical, and functional characteristics of the composite films was investigated. The results showed that the introduction of PCDs into the FSG/ADA matrix effectively reinforced the mechanical performance, enhanced the water vapor and water resistance, increased UV-light blocking, conferred fluorescence properties, and improved the thermal properties of the composite films. Under 3 wt% PCDs content, the FSG/ADA/PCDs-3 % composite film not only presented significant antioxidant capacity with a radical scavenging rate of 91.71 % for DPPH and approximately 100 % for ABTS, but also exhibited excellent antimicrobial ability against bacteria and fungi. Results of a preservation experiment showed that the prepared FSG/ADA/PCDs-3 % film preserved the physiological qualities of strawberries post-harvest and extended their shelf-life to 7 days at room temperature. Overall, the fabricated FSG/ADA/PCDs composite films are promising for use in eco-friendly active food packaging.
Collapse
Affiliation(s)
- Yongshi Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Junxian Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linping Sun
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bingzhen Liu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Wu DY, Wang SS, Wu CS. A new composite fabricated from hydroxyapatite, gelatin-MgO microparticles, and compatibilized poly(butylene succinate) with osteogenic functionality. BIOMATERIALS ADVANCES 2023; 154:213586. [PMID: 37595523 DOI: 10.1016/j.bioadv.2023.213586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
In this study, thermally processed recycled fish teeth (FT) and fish scales, magnesium oxide (MgO), and biobased polyesters were fabricated into new bioactive and environmentally friendly composites. The magnesium oxide was encapsulated into laboratory-made fish scale-derived gelatin to form gelatin-MgO microparticles. Hydroxyapatite (HA) and gelatin were obtained by heat-treating FTs and fish scales, respectively. Compatibilized poly(butylene succinate) (CPBS), i.e., poly(butylene succinate) (PBS) to which had been added acrylic acid-grafted PBS (PBS-g-AA) compatibilizer, was combined with HA/gelatin-MgO (GHA) to form CPBS/GHA composites. The structure and tensile properties of the composites were investigated. The CPBS/GHA composites improved the adhesion and proliferation of osteoblast cells. Osteoblast growth, osteoclast growth inhibition, and the antibacterial effect of CPBS/GHA composites were primarily due to the slow release of magnesium ions into the environment from the gelatin-MgO microparticles. Higher levels of calcium and phosphorus species were observed for various PBS/HA and CPBS/GHA composites immersed in simulated body fluid. Mineralization measurements indicated that calcium and phosphate ions precipitated in osteoblasts placed on PBS/HA and CPBS/GHA composites. The study successfully developed a new composite material containing 5 wt% gelatin/MgO (phr), CPBS/HA 10 wt% and 1.0 % gelatin/MgO (an optimum formula of MgO). This composite exhibited superior tensile strength, antibacterial effect, osteoclast growth enhancement, and osteoclast growth reduction. These results suggest that the composites may facilitate the formation of new bone formation in vivo. The CPBS/GHA composites displayed good bone tissue repair ability in engineering applications.
Collapse
Affiliation(s)
- Dung-Yi Wu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shan-Shue Wang
- Department of Cosmetology and Health Care, Kao Yuan University, Kaohsiung County 82101, Taiwan, Republic of China
| | - Chin-San Wu
- Department of Cosmetology and Health Care, Kao Yuan University, Kaohsiung County 82101, Taiwan, Republic of China.
| |
Collapse
|
3
|
Li Y, Shan P, Yu F, Li H, Peng L. Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging. Int J Biol Macromol 2023; 230:123192. [PMID: 36634795 DOI: 10.1016/j.ijbiomac.2023.123192] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
An environmental-friendly composite films containing waste fish scale-derived gelatin (FSG), sodium alginate (SA) and carvacrol loaded ZIF-8 (CV@ZIF-8) nanoparticles were designed and fabricated to develop active food packaging materials capable of sustained antibacterial activity. The microstructure and physicochemical properties of the FSG/SA/CV@ZIF-8 composite films were investigated. The incorporation of CV@ZIF-8 into FSG/SA matrix significantly enhanced the UV-light blocking and the elongation at break, improved water resistance and reduced water vapor permeability, and improved the thermal stability of composite film. The FSG/SA/CV@ZIF-8 film not only exhibited strong antioxidant activity with DPPH radical scavenging rate of 92.35 %, but also showed the satisfactory and long-acting antibacterial ability against E. coli and S. aureus due to slow release of CV from composite film. Strawberry preservation experiment revealed that FSG/SA/CV@ZIF-8 film decelerated the texture deterioration and retarded the growth of spoilage microorganism, resulting in the prolonged shelf-life of 8 days under ambient condition, indicating its promising application prospect in food preservation packaging.
Collapse
Affiliation(s)
- Yongshi Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Shan
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fuyou Yu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Varghese SA, Pulikkalparambil H, Promhuad K, Srisa A, Laorenza Y, Jarupan L, Nampitch T, Chonhenchob V, Harnkarnsujarit N. Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers (Basel) 2023; 15:polym15030648. [PMID: 36771949 PMCID: PMC9920369 DOI: 10.3390/polym15030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Waste management in the agricultural sector has become a major concern. Increased food production to satisfy the surge in population has resulted in the generation of large volumes of solid waste. Agro-waste is a rich source of biocompounds with high potential as a raw material for food packaging. Utilization of agro-waste supports the goal of sustainable development in a circular economy. This paper reviews recent trends and the development of agro-wastes from plant and animal sources into eco-friendly food packaging systems. Different plant and animal sources and their potential development into packaging are discussed, including crop residues, process residues, vegetable and fruit wastes, and animal-derived wastes. A comprehensive analysis of the properties and production methods of these packages is presented. Future aspects of agro-waste packaging systems and the inherent production problems are addressed.
Collapse
Affiliation(s)
- Sandhya Alice Varghese
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Harikrishnan Pulikkalparambil
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Lerpong Jarupan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Tarinee Nampitch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +662-562-5045; Fax: +662-562-5046
| |
Collapse
|
5
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
6
|
Fabrication, Characterization and In Vitro Assessment of Laevistrombus canarium-Derived Hydroxyapatite Particulate-Filled Polymer Composite for Implant Applications. Polymers (Basel) 2022; 14:polym14050872. [PMID: 35267694 PMCID: PMC8912798 DOI: 10.3390/polym14050872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
This paper presents the formulation, characterization, and in vitro studies of polymer composite material impregnated with naturally derived hydroxyapatite (HA) particulates for biomedical implant applications. Laevistrombus canarium (LC) seashells (SS) were collected, washed and cleaned, sun-dried for 24 h, and ground into powder particulates. The SS particulates of different weight percentages (0, 10, 20, 30, 40, 50 wt%)-loaded high-density polyethylene (HDPE) composites were fabricated by compression molding for comparative in vitro assessment. A temperature-controlled compression molding technique was used with the operating pressure of 2 to 3 bars for particulate retention in the HDPE matrix during molding. The HDPE/LC composite was fabricated and characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), differential scanning calorimetry (DSC), and TGA. Mechanical properties such as tensile, compression, flexural, hardness, and also surface roughness were tested as per ASTM standards. Mass degradation and thermal stability of the HDPE/LC composite were evaluated at different temperatures ranging from 10 to 700 °C using thermogravimetric analysis (TGA). The maximum tensile strength was found to be 27 ± 0.5 MPa for 30 wt% HDPE/LC composite. The thermal energy absorbed during endothermic processes was recorded as 71.24 J/g and the peak melting temperature (Tm) was found to be 128.4 °C for the same 30 wt% of HDPE/LC composite specimen. Excellent cell viability was observed during the in vitro biocompatibility study for EtO-sterilized 30 wt% of HDPE/LC composite specimen, except for a report of mild cytotoxicity in the case of higher concentration (50 µL) of the MG-63 cell line. The results demonstrate the potential of the fabricated composite as a suitable biomaterial for medical implant applications.
Collapse
|
7
|
Yang H, Wang H, Huang M, Cao G, Tao F, Zhou G, Shen Q, Yang H. Repurposing fish waste into gelatin as a potential alternative for mammalian sources: A review. Compr Rev Food Sci Food Saf 2022; 21:942-963. [PMID: 35181993 DOI: 10.1111/1541-4337.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023]
Abstract
Mammalian gelatin is extensively utilized in the food industry because of its physicochemical properties. However, its usage is restricted and essentially prohibited for religious people. Fish gelatin is a promising alternative with no religious and social restrictions. The desirable properties of fish gelatin can be significantly improved by various methods, such as the addition of active compounds, enzymes, and natural crosslinking agents (e.g., plant phenolics and genipin), and nonthermal physical treatments (e.g., ionizing radiation and high pressure). The aim of this study was to explore whether the properties of fish gelatin (gel strength, melting or gelling temperature, odor, viscosity, sensory properties, film-forming ability, etc.) could be improved to make it comparable to mammalian gelatin. The structure and properties of gelatins obtained from mammalian and fish sources are summarized. Moreover, the modification methods used to ameliorate the properties of fish gelatin, including rheological (gelling temperature from 13-19°C to 23-25°C), physicochemical (gel strengths from ∼200 to 250 g), and thermal properties (melting points from ∼25 to 30°C), are comprehensively discussed. The relevant literature reviewed and the technological advancements in the industry can propel the development of fish gelatin as a potential alternative to mammalian gelatin, thereby expanding its competitive market share with increasing utility.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Min Huang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.,Department of Food Science and Technology, National University of Singapore, Singapore
| | - Guangtian Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Guanghong Zhou
- China Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Animal Products Processing, Ministry of Agriculture; Jiangsu Collaborative Innovation Center of Meat Production and Processing; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore
| |
Collapse
|
8
|
Reactive Magnetron Plasma Modification of Electrospun PLLA Scaffolds with Incorporated Chloramphenicol for Controlled Drug Release. Polymers (Basel) 2022; 14:polym14030373. [PMID: 35160362 PMCID: PMC8839200 DOI: 10.3390/polym14030373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Surface modification with the plasma of the direct current reactive magnetron sputtering has demonstrated its efficacy as a tool for enhancing the biocompatibility of polymeric electrospun scaffolds. Improvement of the surface wettability of materials with water, as well as the formation of active chemical bonds in the near-surface layers, are the main reasons for the described effect. These surface effects are also known to increase the release rate of drugs incorporated in fibers. Herein, we investigated the effect of plasma modification on the chloramphenicol release from electrospun poly (lactic acid) fibrous scaffolds. Scaffolds with high-50 wt./wt.%-drug content were obtained. It was shown that plasma modification leads to an increase in the drug release rate and drug diffusion coefficient, while not deteriorating surface morphology and mechanical properties of scaffolds. The materials' antibacterial activity was observed to increase in the first day of the experiment, while remaining on the same level as the unmodified group during the next six days. The proposed technique for modifying the surface of scaffolds will be useful for obtaining drug delivery systems with controlled accelerated release, which can expand the possibilities of local applications of antibiotics and other drugs.
Collapse
|
9
|
Yan Y, Zhang L, Zhao X, Zhai S, Wang Q, Li C, Zhang X. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. Int J Biol Macromol 2022; 203:49-57. [PMID: 35038472 DOI: 10.1016/j.ijbiomac.2022.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
The study presents the preparation of novel biocomposites based on different lignin fractions and polylactic acid (PLA). The lignin was extracted from pine residue using deep eutectic solvent (DES) and was subjected to fractionation with ethanol and acetone as well as esterification modification with succinic anhydride (SAn). Different lignin fractions were characterized and analyzed, while lignin-based biocomposites were prepared by melt injection. The results showed that lignin molecular weight was inversely proportional to the phenolic hydroxyl content and positively proportional to the alcohol hydroxyl group. The mechanical properties of the composites were also significantly affected by different molecular weights of lignin, indicating that the non-homogeneity of lignin affects its value-added utilization. In contrast to other performances of composites, the flexural and impact strengths of the materials prepared by acetone extracted lignin (AL) were improved by 18.2% and 28%, respectively, while the antibacterial properties against Staphylococcus aureus were up to 95%. The enhanced mechanical properties, antibacterial effect, and steady biocompatibility provide potential possibilities for lignin-based composites in biomedical applications.
Collapse
Affiliation(s)
- Yin Yan
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China
| | - Lihe Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China
| | - Xi Zhao
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China
| | - Siyu Zhai
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China
| | - Qian Wang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China
| | - Cui Li
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, 10029 Beijing, China.
| |
Collapse
|
10
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|
11
|
Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. Int J Biol Macromol 2021; 191:1164-1174. [PMID: 34597703 DOI: 10.1016/j.ijbiomac.2021.09.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
Petroleum-based plastics (such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, etc.) as white waste have caused great concern in the environment. It is urgent to develop a kind of biodegradable, biocompatible and non-toxic materials to replace them. Herein, an environmental-friendly edible film for postharvest fruits refreshing application was prepared by combining the waste fish scale-derived gelatin, chitosan as well as CaCO3 nanoparticles. The as-prepared nanocomposite film showed the multifunctional features, such as UV absorption, antimicrobial, oxygen screening, excellent mechanical properties and non-toxic. In addition, the protein-polysaccharide based nanocomposite film was hydrophilic and can be easily washed away on fruits before eating. In order to inspect its preservative effect on fruits, longan and banana were chosen as the testing object. Our results showed that the edible multifunctional nanocomposite film can effectively extend the shelf life of longan by more than 3 days and banana by more than 5 days, compared with the control groups. Integrating natural biological macromolecules gelatin and chitosan into a multifunctional nanocomposite film with series of advantages of biodegradability, sustainability as well as multifunction is expected to be a potential preservative material for food packaging applications.
Collapse
|