1
|
Gupta S, Kandasubramanian B. Silk adsorbent for green and efficient removal of methylene blue from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33226-9. [PMID: 38605272 DOI: 10.1007/s11356-024-33226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Silk, a naturally occurring proteinaceous biopolymer with remarkable adsorbent properties, has been employed in wastewater remediation. The sericin coating, functioning as a protective barrier and rendering fibres impervious to external chemical attacks and preventing their involvement in chemical reactions, was removed using a greener alternative to harness silk as an effective adsorbent. Subsequently, the silk fibres underwent intermittent microwave degumming to extract sericin, and the fibres were utilized for the adsorptive exclusion of the hazardous methylene blue (MB) dye. The comparative batch adsorption studies (kinetics and isotherm) between raw silk fibres and degummed fibres were performed to comprehend the role of degumming on fibre adsorption efficacy by varying operating conditions, including pH, time of contact, initial adsorbate and dosage of adsorbent. The paramount adsorption capacity of raw silk was observed to be 137.08 mg g-1 and 179.14 mg g-1 for degummed silk when adsorbate conc. was 100 ppm. The kinetics of adsorption obeyed pseudo-second order suggesting that the rate controlling step is chemisorptions, and data demonstrated greatest fit to Langmuir isotherm exhibiting mono-layer adsorption. Further, biodegradability was studied by mimicking natural environmental conditions where the raw and degummed silk fibres demonstrated 51% and 53% degradation, respectively, after 180 days. Overall, based on obtained results, this study highlights the suitability of silk as an effective as well as sustainable adsorbent for the exclusion of toxic methylene blue dye from wastewater.
Collapse
Affiliation(s)
- Shruti Gupta
- Structural Composites Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Techology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Structural Composites Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Techology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
2
|
Lv J, Wang J, Zeng Y, Tian S, Wang F, Zhai Y, Zhou Q, Luo X, Zhang X, Liu B, Zhou C. In vitro chemical treatment of silk increases the expression of pro-inflammatory factors and facilitates degradation in rats. J Appl Biomater Funct Mater 2024; 22:22808000231222704. [PMID: 38217423 DOI: 10.1177/22808000231222704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVES Silk fiber is difficult to degrade in vivo, which limits its application in tissue engineering materials such as artificial nerves. Therefore, in this study aim to promote its degradation in vivo by chemical treating silk fibers in vitro. MATERIALS AND METHODS Sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) observations, mechanical test, Fourier transform infrared spectroscopy (FT-IR) measurements were used to investigate the degradation effect of chemicals (hydrochloric acid, phosphoric acid, acetic acid, sodium hydroxide, calcium hydroxide, sodium bicarbonate, and calcium chloride) on silk fiber in vitro. Immunofluorescence staining and transcriptome analysis were used to investigate the effect of inflammatory factors on the degradation of chemically treated silk fiber in rats. RESULTS (1) Silks were separated into finer fibers in each group. (2) FT-IR absorption peaks of amides I, II, and III overlap in each group. (3) Silk degradation degree in each group was higher than that in an untreated group. The calcium chloride-treated group was completely degraded. (4) Fibronectin, collagen I, collagen III, integrin α and CD68 were immunofluorescence positive in all vegetation section. (5) There were no significant differences in the expressions of collagen I, collagen III, and fibronectin in the vegetations formed on the 14th day of subcutaneous implantation, while integrin α, CD68, TNF-α, IL-1b, and IL-23 express at higher levels with IL-10 at lower levels. CONCLUSIONS All chemicals could completely degrade silk; however, their degradation products were not the same. The chemicals change the mechanical properties of silk by separating it into finer fibers, which increase the contact surface area between the silk and tissue fluid, accelerating the degradation of monofilaments in vivo by promoting inflammation and macrophage activity through the increased and decreased expressions of pro- and anti-inflammatory factors, respectively.
Collapse
Affiliation(s)
- Jinfeng Lv
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jieping Wang
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yao Zeng
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Simeng Tian
- School of Life Sciences, Southwest University, Chongqing, China
| | - Fei Wang
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yixue Zhai
- School of Life Sciences, Southwest University, Chongqing, China
| | - Qian Zhou
- School of Life Sciences, Southwest University, Chongqing, China
| | - Xiyue Luo
- School of Life Sciences, Southwest University, Chongqing, China
| | - Xuanjie Zhang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Bin Liu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Chan Zhou
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Salama A. Novel cellulose derivative containing aminophenylacetic acid as sustainable adsorbent for removal of cationic and anionic dyes. Int J Biol Macromol 2023; 253:126687. [PMID: 37666402 DOI: 10.1016/j.ijbiomac.2023.126687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The synthesis and characterization of a novel cellulose derivative as a potential sustainable adsorbent for cationic and anionic dyes are described through processing in ionic liquids. Cellulose was solubilized in ionic liquid with tosyl chloride to form tosyl cellulose which reacted with 4-aminophenylacetic acid through nucleophilic substitution mechanism. The new cellulose derivative was characterized and explored as an effective adsorbent for methylene blue (MB) and methyl orange (MO) removal, and the adsorption behaviors were investigated with various models. The adsorption behavior of the cellulose derivative followed Langmuir and pseudo-second-order models, and the maximum adsorption efficiency recorded 135 and 106 mg/g for MB and MO, respectively. There is possibility that the enhanced adsorption capacity of the cellulose derivative is due to the carboxylic and amino functional groups that provide sufficient active sites to enhance dye molecule affinity. The adsorption results demonstrate that the cellulose derivative containing aminophenylacetic acid was efficient adsorbent for removals of MB and MO.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622 Giza, Egypt.
| |
Collapse
|
4
|
El-Sakhawy M, Salama A, Tohamy HAS. Applications of propolis-based materials in wound healing. Arch Dermatol Res 2023; 316:61. [PMID: 38151671 PMCID: PMC10752841 DOI: 10.1007/s00403-023-02789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Due to its excellent antiseptic efficacy and antimicrobial properties, propolis has shown attractive advantages in wound dressings. However, an inclusive review of the propolis-based materials as a wound dressing is still lacking. The current short review summarizes the skin wound healing process, relates evaluation parameters, and then reviews the refined propolis-based materials dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and substance delivery. The approaches implemented to achieve these functions are classified and discussed. Furthermore, applications of propolis wound dressing for treating different types of wounds such as heal wounds, burns, and ulcers are presented. The future directions of propolis-based wound dressings for wound healing are further proposed. This review showed that propolis-based materials might be a promising new dressing for wound occlusion and tissue repairing.
Collapse
Affiliation(s)
- Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
5
|
Salama A, El-Sakhawy M. Synthesis and adsorption performance of functionalized chitosan and carboxyethylsilanetriol hybrids. BMC Chem 2023; 17:33. [PMID: 37029397 PMCID: PMC10080773 DOI: 10.1186/s13065-023-00943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
A novel adsorbent from cationic chitosan derivative and anionic silica precursor was fabricated to remove methylene blue (MB). The hybrid material was prepared from N-guanidinium chitosan acetate (GChi) and carboxyethylsilanetriol sodium salt by a simple ionic interaction followed by sol-gel approach. Multiple characterization methods were used to analyze the morphology and the structure of the well-prepared functionalized material. Batch experiments were conducted to optimize the various operational parameters. The Langmuir isotherm was used to fit the data, and it predicted monolayer adsorption with a maximum capacity of 334 mg g-1. A pseudo-second-order equation fit the adsorption process well. Chitosan/silica hybrids containing carboxylic groups are efficient and cost-effective adsorbents for cationic dyes adsorption from aqueous solutions.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
6
|
He H, Huang M, Gao Z, Zhou Y, Zhao Y, Chen Y, Gu Y, Chen S, Yan B. Mussel-inspired polydopamine-modified silk nanofibers as an eco-friendly and highly efficient adsorbent for cationic dyes. NEW J CHEM 2023. [DOI: 10.1039/d2nj06055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Obtaining silk nanofibers by simple swelling and mechanical splitting of fibers.
Collapse
Affiliation(s)
- Heng He
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Minggang Huang
- Key Laboratory of Fine Chemical Application Technology of Luzhou, Luzhou 646099, China
| | - Zhiwei Gao
- Xinjiang Xinchun Petroleum Development Co., Ltd., Sinopec, Dongying 257000, China
| | - Yifan Zhou
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yuxiang Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yan Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
El-Sayed NS, Salama A, Guarino V. Coupling of 3-Aminopropyl Sulfonic Acid to Cellulose Nanofibers for Efficient Removal of Cationic Dyes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6964. [PMID: 36234302 PMCID: PMC9570761 DOI: 10.3390/ma15196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
A novel anionic nanostructured cellulose derivate was prepared through the coupling of TEMPO-oxidized cellulose nanofibers with 3-aminopropyl sulfonic acid (3-APSA). 3-APSA grafting was variously investigated by FT-IR spectroscopy and transmission electron microscopy (TEM) analysis, confirming a high reaction degree. The surface morphology investigated via scanning electron microscopy (SEM) revealed a more uniform organization of the nanofibers after the 3-APSA coupling, with improvements in terms of fiber packing and pore interconnectivity. This peculiar morphology contributes to improving methylene blue (MB) adsorption and removal efficiency at different operating conditions (pH, initial time, and initial concentration). The results indicated a maximum adsorption capacity of 526 mg/g in the case of 3-APSA grafted nanofibers, over 30% more than that of non-grafted ones (370 mg/g), which confirm a relevant effect of chemical modification on the adsorbent properties of cellulose nanofibers. The adsorption kinetics and isotherms of the current adsorbents match with the pseudo-second-order kinetic and Langmuir isotherm models. This study suggests the use of chemical grafting via 3-APSA is a reliable and facile post-treatment to design bio-sustainable and reusable nanofibers to be used as high-performance adsorbent materials in water pollutant remediation.
Collapse
Affiliation(s)
- Naglaa Salem El-Sayed
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, pad.20, V.le Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
8
|
Lu ZQ, Ren Q, Han SL, Ding LJ, Li ZC, Hu D, Wang LY, Zhang LL. Calcium Phosphate Functionalization and Applications in Dentistry. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The oral and maxillofacial hard tissues support the maxillofacial shape and serve as the foundation for functional activities. Defects in these tissues not only impair patients’ ability to perform their normal physiological functions but also have a significant negative impact
on their psychological well-being. Moreover, these tissues have a limited capacity for self-healing, necessitating the use of artificial materials to repair defects. Calcium phosphate is a fine-grained inorganic biomineral found in vertebrate teeth and bones that has a comparable composition
to human hard tissues. Calcium phosphate materials are biocompatible, bioactive, and osteogenic for hard tissue repair, despite drawbacks such as poor mechanical qualities, limiting their clinical efficacy and application. With the advancement of materials science and technology, numerous
techniques have been developed to enhance the characteristics of calcium phosphate, and one of them is functionalization. Calcium phosphate can be functionally modified by changing its size, morphology, or composition through various preparation processes to achieve multifunctionality and
improve physical and chemical properties, biocompatibility, and osteogenic potential. The purpose of this review is to provide new ideas for the treatment of oralmaxillofacial hard tissue defects and deficiencies by summarizing the functionalization strategies of calcium phosphate materials
and their applications in dentistry.
Collapse
Affiliation(s)
- Zi-qian Lu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Qian Ren
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Si-li Han
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Long-jiang Ding
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Zhong-cheng Li
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Die Hu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Luo-yao Wang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Ling-lin Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| |
Collapse
|
9
|
Salama A, Saleh AK. Enhancement of antimicrobial response against human pathogens by a novel cationic starch derivative. STARCH-STARKE 2022. [DOI: 10.1002/star.202100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department National Research Centre 33 El‐Bohouth st. Dokki 12622 Egypt
| | - Ahmed K. Saleh
- Cellulose and Paper Department National Research Centre 33 El‐Bohouth st. Dokki 12622 Egypt
| |
Collapse
|
10
|
Facile synthesis of self-dispersed β-cyclodextrin-coupled cellulose microgel for sustained release of vanillin. Int J Biol Macromol 2022; 208:70-79. [DOI: 10.1016/j.ijbiomac.2022.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 02/03/2023]
|
11
|
Gao T, Guan G, Wang X, Lou T. Electrospun molecularly imprinted sodium alginate/polyethylene oxide nanofibrous membranes for selective adsorption of methylene blue. Int J Biol Macromol 2022; 207:62-71. [PMID: 35247421 DOI: 10.1016/j.ijbiomac.2022.02.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Molecular imprinting technique is an efficient method to improve the selective adsorption capacity for the target pollutant. In this study, sodium alginate/polyethylene oxide molecularly imprinted nanofibrous membrane (SA/PEO-MINM) with average diameter of 185 ± 20 nm was successfully synthesized by electrospinning for selective adsorption of methylene blue (MB). Benefiting from the molecular imprinted technology, the adsorption amount of SA/PEO-MINM for MB was increased by about 65%, significantly higher than the non-imprinted membrane. Results showed that the adsorption equilibrium could be well fitted with Langmuir isotherm model and the maximum adsorption capacity towards MB was 3186.7 mg/g. Kinetic experiments well complied with the Pseudo second order model. Reusability studies indicated that the removal efficiency of MB could maintain 93% of the original adsorption capacity after four consecutive adsorption/desorption cycles. More importantly, the SA/PEO-MINM with high surface area and specific adsorption recognition sites showed excellent selective adsorption capacity in the adsorption experiment of MB and methylene orange mixed dye solution. In general, the SA/PEO-MINM can be successfully applied for the selective removal of MB from dye wastewater.
Collapse
Affiliation(s)
- Tong Gao
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Guohao Guan
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xuejun Wang
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Tao Lou
- Department of Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics 2022; 14:pharmaceutics14020386. [PMID: 35214120 PMCID: PMC8878053 DOI: 10.3390/pharmaceutics14020386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In the last decade, amphiphilic cellulose (AC) is emerging as attractive biomaterial for different therapeutic use, due to its unique chemical and physical properties. Using it as alternative to synthetic polymers, AC opens up new avenues to prepare new bio-sustainable materials with low impact in the cellular environment. Herein, most recent methods to synthesize and processing AC materials from different sources—i.e., cellulose nanofibers, bacterial cellulose, cellulose derivatives—will be discussed. By an accurate optimization of morphology and surface chemistry, it is possible to develop innovative amphiphilic platforms, promising for a wide range of biomedical applications, from drug delivery to molecular/particle adsorption.
Collapse
|
13
|
Deng Q, Wang F, Gough CR, Hu X. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Int J Biol Macromol 2022; 197:55-67. [PMID: 34952094 DOI: 10.1016/j.ijbiomac.2021.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022]
Abstract
One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure and physicochemical properties is by creating composite materials that combine synthetic polymers with natural proteins using ionic liquids. In this study, biodegradable poly(d,l-lactic acid) (PDLLA) was blended with silk fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methylimidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible polymer blend characteristics. By increasing the SF content in the composites, the amounts of β-sheets in the films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and protein for a wide variety of biomedical and green material applications.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Christopher R Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
14
|
Li JX, Zhao SX, Zhang YQ. Silk Protein Composite Bioinks and Their 3D Scaffolds and In Vitro Characterization. Int J Mol Sci 2022; 23:910. [PMID: 35055092 PMCID: PMC8776115 DOI: 10.3390/ijms23020910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
This paper describes the use of silk protein, including fibroin and sericin, from an alkaline solution of Ca(OH)2 for the clean degumming of silk, which is neutralized by sulfuric acid to create calcium salt precipitation. The whole sericin (WS) can not only be recycled, but completely degummed silk fibroin (SF) is also obtained in this process. The inner layers of sericin (ILS) were also prepared from the degummed silk in boiling water by 120 °C water treatment. When the three silk proteins (SPs) were individually grafted with glycidyl methacrylate (GMA), three grafted silk proteins (G-SF, G-WS, G-ILS) were obtained. After adding I2959 (a photoinitiator), the SP bioinks were prepared with phosphate buffer (PBS) and subsequently bioprinted into various SP scaffolds with a 3D network structure. The compressive strength of the SF/ILS (20%) scaffold added to G-ILS was 45% higher than that of the SF scaffold alone. The thermal decomposition temperatures of the SF/WS (10%) and SF/ILS (20%) scaffolds, mainly composed of a β-sheet structures, were 3 °C and 2 °C higher than that of the SF scaffold alone, respectively. The swelling properties and resistance to protease hydrolysis of the SP scaffolds containing sericin were improved. The bovine insulin release rates reached 61% and 56% after 5 days. The L929 cells adhered, stretched, and proliferated well on the SP composite scaffold. Thus, the SP bioinks obtained could be used to print different types of SP composite scaffolds adapted to a variety of applications, including cells, drugs, tissues, etc. The techniques described here provide potential new applications for the recycling and utilization of sericin, which is a waste product of silk processing.
Collapse
Affiliation(s)
| | | | - Yu-Qing Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199 Renai Road, Industrial Park, Suzhou 215123, China; (J.-X.L.); (S.-X.Z.)
| |
Collapse
|
15
|
Acharya S, Liyanage S, Parajuli P, Rumi SS, Shamshina JL, Abidi N. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers (Basel) 2021; 13:4344. [PMID: 34960895 PMCID: PMC8704128 DOI: 10.3390/polym13244344] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance to chemical processing. Both fundamental and applied aspects of cellulose dissolution remain active areas of research and include mechanistic studies on solvent-cellulose interactions, the development of novel solvents and/or solvent systems, the optimization of dissolution conditions, and the preparation of various cellulose-based materials. In this review, we build on existing knowledge on cellulose dissolution, including the structural characteristics of the polymer that are important for dissolution (molecular weight, crystallinity, and effect of hydrophobic interactions), and evaluate widely used non-derivatizing solvents (sodium hydroxide (NaOH)-based systems, N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl), N-methylmorpholine-N-oxide (NMMO), and ionic liquids). We also cover the subsequent regeneration of cellulose solutions from these solvents into various architectures (fibers, films, membranes, beads, aerogels, and hydrogels) and review uses of these materials in specific applications, such as biomedical, sorption, and energy uses.
Collapse
Affiliation(s)
| | | | | | | | | | - Noureddine Abidi
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.A.); (S.L.); (P.P.); (S.S.R.); (J.L.S.)
| |
Collapse
|
16
|
Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 2021; 192:1196-1216. [PMID: 34655588 DOI: 10.1016/j.ijbiomac.2021.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Globally, millions of people have no access to clean drinking water and are either striving for that or oppressed to intake polluted water. Arsenic is considered one of the most hazardous contaminants in water bodies that reaches there due to various natural and anthropogenic activities. Modified chitosan has gained much attention from researchers due to its potential for arsenic removal. This review focuses on the need and potential of chitosan-based biosorbents for arsenic removal from water systems. Chitosan is a low-cost, abundant, biodegradable biopolymer that possesses unique structural aspects and functional sites for the adsorption of contaminants like arsenic species from contaminated water. The chitosan-based biosorbents had also been modified using various techniques to enhance their arsenic removal efficiencies. This article reviews various forms of chitosan and parameters involved in chitosan modification which eventually affect the arsenic removal efficiency of the resultant sorbents. The literature revealed that the modified chitosan-based sorbents could express higher adsorption efficiency compared to those prepared from native chitosan. The sustainability of the chitosan-based sorbents has also been considered in terms of reusability. Finally, some recommendations have been underlined for further improvements in this domain.
Collapse
|
17
|
Debnath B, Haldar D, Purkait MK. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 2021; 273:118537. [PMID: 34560949 DOI: 10.1016/j.carbpol.2021.118537] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
In order to meet the growing energy crisis of the 21st century, the utilization of bio-based materials has become a field of high research endeavour. In view of that, the present review paper is focused on different techniques that are frequently explored for the synthesis of value-added crystalline derivatives of cellulose like MCC and NCC from agricultural wastes and forest residues. Moreover, a comparative analysis between thermochemical and biochemical methods is carried out for such valorization of biomass considering the mechanism involved with various reactions. Further, a critical analysis is performed on various individual techniques specifically used for the applications of MCC and NCC in different fields including environmental, polymer industry, pharmaceutical and other emerging sectors. This article will assist the readers not only to explore new biomass sources but also provides an in-depth insight on various green and cost-effective methods for sustainable production of crystalline cellulose.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
18
|
Dai H, Chen Y, Ma L, Zhang Y, Cui B. Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: Characterization and application for methylene blue adsorption. Int J Biol Macromol 2021; 191:129-138. [PMID: 34537294 DOI: 10.1016/j.ijbiomac.2021.09.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023]
Abstract
In this study, we developed a facile and eco-friendly fabrication of hydrogels based on lemon peel (LP) and its isolated microcrystalline cellulose (LPMCC) by direct co-dissolving in 1-butyl-3-methylimidazolium chloride (BmimCl), followed by direct regeneration in distilled water to form hydrogels. The influence of LP addition on the structure and methylene blue (MB) adsorption of the hydrogels was systematically investigated. The hydrogels displayed a physically cross-linked network through hydrogen bonding interactions. Compared with pure LPMCC hydrogel, the introduction of LP increased the porosity and improved the thermal stability of the hydrogels. The adsorption process of MB on the hydrogels conformed better to the pseudo-second-order kinetic (R2 > 0.993) and Langmuir isotherm models (R2 > 0.996). The MB adsorption process was feasible, spontaneous and exothermic in nature, and was influenced by initial MB concentration, pH, temperature, ionic type and strength. Notably, the introduction of LP improved MB adsorption capacity of the hydrogels. This work develops a facile approach of agricultural by-products based hydrogels using pure cellulose as the structural skeleton and untreated lignocellulose components as the structure modifier.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yuan Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
19
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
20
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
21
|
Liu J, Wang S, Jiang L, Shao W. Production and characterization of antimicrobial bacterial cellulose membranes with non-leaching activity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Salama A, Abou-Zeid RE. Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes. Int J Biol Macromol 2021; 188:404-410. [PMID: 34371039 DOI: 10.1016/j.ijbiomac.2021.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
A new adsorbent from chitosan and anionic silica was prepared by ionic interaction followed by sol-gel process. The obtained nanocomposite was characterized by different techniques: FTIR, XRD, SEM/EDX, TGA, and TEM. The results showed that silica precursor interacts with chitosan and deposits as regular spherical nanoparticles. The methylene blue (MB) adsorption by chitosan/silica nanocomposite achieved the adsorption equilibrium within 60 min. The adsorption method is fitted to the pseudo-second-order kinetic model and the Langmuir adsorption model with a maximum adsorption capacity of 847.5 mg/g at slight alkaline solution. Chitosan/silica composite displayed high regeneration capability and recovery of MB up to five cycles without the loss of the adsorption efficiency. The current study showed that as-prepared chitosan/silica nanocomposite is an appropriate material for the adsorption of organic pollutants from wastewater.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P. O. 12622, Giza, Egypt.
| | - Ragab E Abou-Zeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P. O. 12622, Giza, Egypt
| |
Collapse
|
23
|
Wang Q, Zhang X, Wang F, Xie Y, Wang C, Zhao J, Yang Q, Chen Z. Egg yolk/ZIF-8/CLPAA composite aerogel: Preparation, characterization and adsorption properties for organic dyes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Salama A. Recent progress in preparation and applications of chitosan/calcium phosphate composite materials. Int J Biol Macromol 2021; 178:240-252. [PMID: 33631262 DOI: 10.1016/j.ijbiomac.2021.02.143] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/15/2022]
Abstract
Studying the development of unique materials from sustainable and renewable resources has gained increasing concern due to the depletion of fossil resources. Chitosan and its derivatives have been considered as versatile candidates for preparing attractive materials. The fabrication of chitosan/calcium phosphate composite compounds has received much attention for the development of numerous promising products in different fields. In this short review, recent preparation strategies for chitosan/calcium phosphate composites such as freeze casting, vacuum-assisted filtration, and biomimetic mineralization were discussed. The review presented their advances for diverse applications such as bone tissue engineering implants, drug delivery, wound healing, dental caries, as well adsorption of organic and heavy metals from polluted water. The challenges and future perspectives for the application of chitosan/calcium phosphate materials in biomedical and environmental applications were also involved in this review article.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|