1
|
Li F, An Y, Xue J, Fu H, Wang H, Cao P, Zhang M, Fei P, Liu M, Zhao F. Cellulose Acetate Membranes: Antibacterial Strategy and Application-A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409728. [PMID: 39679825 DOI: 10.1002/smll.202409728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Developing antibacterial and biodegradable cellulose acetate (CA) membrane materials is one of the main challenges in multiple application fields. CA membrane materials are widely used in gas purification, water purification, and biomedical fields due to their environmental friendliness, high chemical and mechanical stability, excellent processability, and low cost. However, antibacterial modification of CA membrane materials to enhance their utilization value in the application process has always been the direction of researchers' efforts. This review focuses on the preparation and application of antibacterial CA and its derivatives membranes, especially the types and introduction methods of antibacterial agents. First, a brief introduction of CA-based polymer membranes is presented, followed by an overview of the antibacterial agent types and their introduction methods, and antibacterial mechanisms. After that, various membranes prepared using CA-based polymers as the main matrix or as additives are discussed. Then, specific applications of antibacterial CA-based membrane materials in water purification, gas purification, biomedical, food packaging, and other fields are outlined.
Collapse
Affiliation(s)
- Fu Li
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Jinhong Xue
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hui Fu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hongbo Wang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Puzhi Cao
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, No. 398 Donghai, Quanzhou City, Fujian, 362000, P. R. China
| | - Fulai Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
2
|
Wang M, Huang C, Chen Y, Ji Y, Yu DG, Bligh SWA. Medicated tri-layer fibers based on cellulose acetate and polyvinylpyrrolidone for enhanced antibacterial and wound healing properties. Carbohydr Polym 2025; 348:122856. [PMID: 39562125 DOI: 10.1016/j.carbpol.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
Wound dressing is commonly used for skin injuries. The design of wound dressing typically stems from the principles of open-wound management such as infection prevention, moisture balance and healing response. A new wound dressing comprising polyvinylpyrrolidone (PVP)-berberine hydrochloride (BHC)/PVP-cellulose acetate (CA)-BHC/CA-aloin tri-layer Janus fiber was successfully fabricated using trifluid side-by-side electrospinning for antibacterial and wound healing functions. The fibrous membrane can hold 5.090 ± 0.276 times of its own water mass and achieve 6 h of microenvironment moisture retention. In vitro antibacterial results show that BHC exhibited selective resistance to S. aureus. The nanofibers were noncytotoxic and showed good cell adhesion properties and enhanced cell proliferation effect compared with BHC or aloin only tri-layer nanofibers. Owing to the specially designed tri-layer Janus structure, the in vitro drug-release profile of drugs-loaded fibrous membrane showed a combination of two-stage release for BHC (76.093 % ± 1.813 % release in first hour and 98.526 % ± 0.604 % release in 6 h) and sustained release for aloin (88.376 % ± 5.282 % release in 6 h). Therefore, the tri-layer Janus structure can be a potential choice for wound dressing application.
Collapse
Affiliation(s)
- Menglong Wang
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China; School of Materials and Chemistry, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai 200093, PR China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai 200093, PR China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai 200093, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai 200093, PR China.
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China.
| |
Collapse
|
3
|
Taghe S, Mirzaeei S, Pakdaman N, Kazemi A, Nokhodchi A. Macrolide-loaded nanofibrous inserts with polycaprolactone and cellulose acetate base for sustained ocular delivery: Pharmacokinetic study in Rabbit's eye. Int J Pharm 2024; 665:124699. [PMID: 39270760 DOI: 10.1016/j.ijpharm.2024.124699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The present study aimed to prepare nanofibrous inserts for sustained ocular drug delivery of Azithromycin (AZM) toward conquering the obstacles of conventional topical drug delivery. Nanofibers were fabricated by electrospinning using polycaprolactone (PCL) and cellulose acetate (CA) which are biocompatible and biodegradable polymers. Prepared nanofibers were evaluated in terms of physicochemical, morphological properties, pharmacokinetic study and ocular irritation. SEM images revealed average diameters of about 160 nm and 190 nm for CA and PCL nanofibers, respectively. These ocular drug delivery systems were strong, flexible, and stable under humid and dry conditions. Quantification was performed using microbiological assay by M. luteus as a microorganism. While PCL-based nanofibrous inserts released AZM in a two-step manner initiated by a burst release via Peppas kinetical model, CA-based inserts showed a gradual release profile without any burst release which followed the first-order model. Results showed that these inserts were non-cytotoxic and non-irritating. The nanofibers showed antibacterial efficacy against Escherichia coli and Staphylococcus aureus. In addition, according to a pharmacokinetic study in Rabbit's Eye, a higher Cmax and lower Tmax were achieved by PCL nanofibers compared to CA-based ones. The pharmacokinetic study of nanofibers in rabbit eyes showed that all formulations were able to maintain the effective concentration of AZM for about 6 days. In conclusion, the prepared nanofibers can be effectively utilized for prolonged ocular delivery of AZM in the treatment of conjunctival infections.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Negin Pakdaman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aliakbar Kazemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
4
|
Moshfeghi T, Najmoddin N, Arkan E, Hosseinzadeh L. A multifunctional polyacrylonitrile fibers/alginate-based hydrogel loaded with chamomile extract and silver sulfadiazine for full-thickness wound healing. Int J Biol Macromol 2024; 279:135425. [PMID: 39245113 DOI: 10.1016/j.ijbiomac.2024.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Most conventional wound dressings do not meet the clinical requisites owing to their limited multifunctionality. Herein, a bilayer wound dressing containing both hydrogel and fibrous structures with multifunctional features was developed for effective skin rehabilitation. Sodium alginate (SA)/gelatin (Gel) hydrogel comprising Matricaria chamomilla L extract and silver sulfadiazine (AgSD) drug as antibacterial agents was cross-linked using genipin and CaCl2. Then, the surface of the hydrogel was covered by electrospun polyacrylonitrile (PAN) nanofibers to fabricate a bilayer dressing. FESEM images revealed formation of continuous, smooth, and bead-free PAN nanofibers with excellent compatibility between hydrogel and fibers. The bilayer wound dressing exhibited satisfactory mechanical virtues including elastic modulus (2.4 ± 0.2 MPa), tensile strength (6.2 ± 0.5 MPa) and elongation at break (21.8 ± 1 %) as well as suitable swelling ratio. Such bilayer dressing revealed biodegradability, cytocompatibility and effective antibacterial performance against gram positive and gram negative strains. Release kinetics of AgSD drug followed a Fickian diffusion mechanism, ensuring sustained drug release. In vivo studies demonstrated bilayer dressing could promote rate of wound closure, re-epithelialization and collagen deposition, facilitating the replacement of damaged skin with healthy tissue. Such engineered wound dressing has a high potency for inducing skin repair and could be used in skin tissue engineering.
Collapse
Affiliation(s)
- Tahereh Moshfeghi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Zhang Z, Du M, Cheng X, Dou X, Zhou J, Wu J, Xie X, Zhu M. A disposable paper-based electrochemical biosensor decorated by electrospun cellulose acetate nanofibers for highly sensitive bio-detection. Analyst 2024; 149:2436-2444. [PMID: 38498083 DOI: 10.1039/d4an00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 μmol mL-1, 100 fg mL-1-10 μg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Manman Du
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiao Cheng
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Xuechen Dou
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
| | - Junting Zhou
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jianguo Wu
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xinwu Xie
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Mengfu Zhu
- Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China.
- National Bio-Protection Engineering Center, Tianjin 300161, China
| |
Collapse
|
6
|
Zhou Y, Guo L, Dai G, Li B, Bai Y, Wang W, Chen S, Zhang J. An Overview of Polymeric Nanoplatforms to Deliver Veterinary Antimicrobials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:341. [PMID: 38392714 PMCID: PMC10893358 DOI: 10.3390/nano14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need to find new solutions for the global dilemma of increasing antibiotic resistance in humans and animals. Modifying the performance of existing antibiotics using the nanocarrier drug delivery system (DDS) is a good option considering economic costs, labor costs, and time investment compared to the development of new antibiotics. Numerous studies on nanomedicine carriers that can be used for humans are available in the literature, but relatively few studies have been reported specifically for veterinary pharmaceutical products. Polymer-based nano-DDS are becoming a research hotspot in the pharmaceutical industry owing to their advantages, such as stability and modifiability. This review presents current research progress on polymer-based nanodelivery systems for veterinary antimicrobial drugs, focusing on the role of polymeric materials in enhancing drug performance. The use of polymer-based nanoformulations improves treatment compliance in livestock and companion animals, thereby reducing the workload of managers. Although promising advances have been made, many obstacles remain to be addressed before nanoformulations can be used in a clinical setting. Some crucial issues currently facing this field, including toxicity, quality control, and mass production, are discussed in this review. With the continuous optimization of nanotechnology, polymer-based DDS has shown its potential in reducing antibiotic resistance to veterinary medicines.
Collapse
Affiliation(s)
- Yaxin Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lihua Guo
- Shenniu Pharmaceutical Co., Ltd., Dezhou 253034, China;
| | - Guonian Dai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
7
|
Maleki H, Doostan M, Khoshnevisan K, Baharifar H, Maleki SA, Fatahi MA. Zingiber officinale and thymus vulgaris extracts co-loaded polyvinyl alcohol and chitosan electrospun nanofibers for tackling infection and wound healing promotion. Heliyon 2024; 10:e23719. [PMID: 38223730 PMCID: PMC10784172 DOI: 10.1016/j.heliyon.2023.e23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Infections are severe complications associated with chronic wounds and tardy healing that should be timely treated to achieve rapid and proper tissue repair. To hinder such difficulties, a nanofibrous mat composed of polyvinyl alcohol and chitosan (PVA/CS) was developed by electrospinning method, containing thyme (Thymus vulgaris) and ginger (Zingiber officinale) extracts. The mat containing 10 wt% of the extracts (at the ratio of 50:50) exposed the nanofibers (NFs) with the nanoscale diameter (average 382 ± 60 nm), smooth surface, and defect-free morphology. Likewise, the relevant analyses of the loaded mat displayed high wettability, porosity, and liquid absorption capacity without any adverse interaction. The obtained mat also provided a high antioxidant activity, and its release profile was continuous and sustained for nearly 72 h. Besides, it inhibited the growth of both Gram-positive S. aureus and Gram-negative E. coli strains. Furthermore, the proposed mat significantly accelerated cutaneous wound healing in bacterial-infected rats by preventing bacteria growth at the wound site. At last, histopathology analysis confirmed the ample regeneration of skin structures, forming collagen fibers and appendages. Overall, the proposed mat containing ginger-thyme extracts provides multiple therapeutic capabilities with promising solutions for inhibiting wound infection and accelerating the healing process.
Collapse
Affiliation(s)
- Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hadi Baharifar
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Saeid Abbasi Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohmmad Amin Fatahi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Shojaei S, Doostan M, Mohammadi Motlagh H, Esnaashari SS, Maleki H. Development of 5-fluorouracil/etoposide co-loaded electrospun nanofibrous scaffold for localized anti-melanoma therapy. J Appl Biomater Funct Mater 2024; 22:22808000241284439. [PMID: 39323034 DOI: 10.1177/22808000241284439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Nanofibrous scaffolds have emerged as promising candidates for localized drug delivery systems in the treatment of cutaneous cancers. In this study, we prepared an electrospun nanofibrous scaffold incorporating 5-fluorouracil (5-FU) and etoposide (ETP) for chemotherapy targeting melanoma cutaneous cancer. The scaffold was composed of polyvinyl alcohol (PVA) and chitosan (CS), prepared via the electrospinning process and loaded with the chemotherapeutic agents. We conducted relevant physicochemical characterizations, assessed cytotoxicity, and evaluated apoptosis against melanoma A375 cells. The prepared 5-FU/ETP co-loaded PVA/CS scaffold exhibited nanofibers (NFs) with an average diameter of 321 ± 61 nm, defect-free and homogenous morphology. FTIR spectroscopy confirmed successful incorporation of chemotherapeutics into the scaffold. Additionally, the scaffold demonstrated a hydrophilic surface, proper mechanical strength, high porosity, and efficient liquid absorption capacity. Notably, sustained and controlled drug release was observed from the nanofibrous scaffold. Furthermore, the scaffold significantly increased cytotoxicity (95%) and apoptosis (74%) in A375 melanoma cells. Consequently, the prepared 5-FU/ETP co-loaded PVA/CS nanofibrous scaffold holds promise as a valuable system for localized eradication of cutaneous melanoma tumors and mitigation of adverse drug reactions associated with chemotherapy.
Collapse
Affiliation(s)
- Shirin Shojaei
- Faculty of Advanced Sciences and Technology, Department of Medical Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahtab Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Mohammadi Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Sara Esnaashari
- Faculty of Advanced Sciences and Technology, Department of Medical Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Wu W, Duan M, Shao S, Meng F, Qin Y, Zhang M. Recent advances in nanomaterial-mediated bacterial molecular action and their applications in wound therapy. Biomater Sci 2023; 11:6748-6769. [PMID: 37665317 DOI: 10.1039/d3bm00663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Because of the multi-pathway antibacterial mechanisms of nanomaterials, they have received widespread attention in wound therapy. However, owing to the complexities of bacterial responses toward nanomaterials, antibacterial molecular mechanisms remain unclear, making it difficult to rationally design highly efficient antibacterial nanomaterials. Fortunately, molecular dynamics simulations and omics techniques have been used as effective methods to further investigate the action targets of nanomaterials. Therefore, the review comprehensively analyzes the antibacterial mechanisms of nanomaterials from the morphology-dependent antibacterial activity and physicochemical/optical properties-dependent antibacterial activity, which provided guidance for constructing excellently efficient and broad-spectrum antibacterial nanomaterials for wound therapy. More importantly, the main molecular action targets of nanomaterials from the membranes, DNA, energy metabolism pathways, oxidative stress defense systems, ribosomes, and biofilms are elaborated in detail. Furthermore, nanomaterials used in wound therapy are reviewed and discussed. Finally, future directions of nanomaterials from mechanisms to nanomedicine are further proposed.
Collapse
Affiliation(s)
- Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Mengjiao Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Shuxuan Shao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
10
|
Lin ZI, Tsai TH, Yu KC, Nien YH, Liu RP, Liu GL, Chi PL, Fang YP, Ko BT, Law WC, Zhou C, Yong KT, Cheng PW, Chen CK. Creation of Chitosan-Based Nanocapsule-in-Nanofiber Structures for Hydrophobic/Hydrophilic Drug Co-Delivery and Their Dressing Applications in Diabetic Wounds. Macromol Biosci 2023; 23:e2300145. [PMID: 37279400 DOI: 10.1002/mabi.202300145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Nanofiber meshes (NFMs) loaded with therapeutic agents are very often employed to treat hard-to-heal wounds such as diabetic wounds. However, most of the NFMs have limited capability to load multiple or hydrophilicity distinctive-therapeutic agents. The therapy strategy is therefore significantly hampered. To tackle the innate drawback associated with the drug loading versatility, a chitosan-based nanocapsule-in-nanofiber (NC-in-NF) structural NFM system is developed for simultaneous loading of hydrophobic and hydrophilic drugs. Oleic acid-modified chitosan is first converted into NCs by the developed mini-emulsion interfacial cross-linking procedure, followed by loading a hydrophobic anti-inflammatory agent Curcumin (Cur) into the NCs. Sequentially, the Cur-loaded NCs are successfully introduced into reductant-responsive maleoyl functional chitosan/polyvinyl alcohol NFMs containing a hydrophilic antibiotic Tetracycline hydrochloride. Having a co-loading capability for hydrophilicity distinctive agents, biocompatibility, and a controlled release property, the resulting NFMs have demonstrated the efficacy on promoting wound healing either in normal or diabetic rats.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Kuan-Chi Yu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Hsun Nien
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Ru-Ping Liu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Regenerative Medical and Cell Therapy Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
11
|
Elsherbini AM, Sabra SA, Rashed SA, Abdelmonsif DA, Haroun M, Shalaby TI. Electrospun polyvinyl alcohol/ Withania somnifera extract nanofibers incorporating tadalafil-loaded nanoparticles for diabetic ulcers. Nanomedicine (Lond) 2023; 18:1361-1382. [PMID: 37800462 DOI: 10.2217/nnm-2023-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Background: Impaired inflammation and vascularization are common reasons for delayed diabetic wound healing. Nanoparticles (NPs)-in-nanofibers composites can manage diabetic wounds. A multifunctional scaffold was developed based on tadalafil (TDF)-loaded NPs incorporated into polyvinyl alcohol/Withania somnifera extract nanofibers. Materials & methods: TDF-loaded NPs were prepared and fully characterized in terms of their physicochemical properties. Extract of ashwagandha was prepared and a blend composed of TDF-loaded NPs, herbal extract and polyvinyl alcohol was used to prepare the whole composite. Results: The whole composite exhibited improved wound closure in a diabetic rat model in terms of reduced inflammation and enhanced angiogenesis. Conclusion: Results suggest that this multifunctional composite could serve as a promising diabetic wound dressing.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Shimaa A Rashed
- Department of Botany& Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt 4 Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Cheng Y, Farasati Far B, Jahanbakhshi M, Bahrami S, Tamimi P, Sedaghat M, Ghazizadeha E. Exploring the potential of a polyvinyl alcohol/chitosan-based nanofibrous matrix for erythromycin delivery: fabrication, in vitro and in vivo evaluation. RSC Adv 2023; 13:18450-18460. [PMID: 37342809 PMCID: PMC10278589 DOI: 10.1039/d3ra02987e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
This study aimed to investigate the potential of polyvinyl alcohol/chitosan nanofibers as a drug delivery system for erythromycin. Polyvinyl alcohol/chitosan nanofibers were fabricated using the electrospinning method and characterized using SEM, XRD, AFM, DSC, FTIR, swelling assessment and viscosity analysis. The in vitro drug release kinetics, biocompatibility, and cellular attachments of the nanofibers have been evaluated using in vitro release studies and cell culture assays. The results showed that the polyvinyl alcohol/chitosan nanofibers displayed improved in vitro drug release and biocompatibility compared to the free drug. The study provides important insights into the potential of polyvinyl alcohol/chitosan nanofibers as a drug delivery system for erythromycin and highlights the need for further investigation into the development of nanofibrous drug delivery systems based on polyvinyl alcohol/chitosan for improved therapeutic efficacy and reduced toxicity. The nanofibers prepared in this approach use less antibiotics, which may be beneficial to the environment. The resulting nanofibrous matrix can be used for external drug delivery applications, such as wound healing or topical antibiotic therapy.
Collapse
Affiliation(s)
- Yuan Cheng
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou 239000 China
| | | | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Shima Bahrami
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences Shiraz Iran
| | - Pegah Tamimi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences Tehran Iran
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Islamic Azad University Najafabad Branch Najafabad 8514143131 Iran
| | - Elham Ghazizadeha
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences Iran
- Department of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University Iran
| |
Collapse
|
13
|
Latiyan S, Kumar TSS, Doble M, Kennedy JF. Perspectives of nanofibrous wound dressings based on glucans and galactans - A review. Int J Biol Macromol 2023:125358. [PMID: 37330091 DOI: 10.1016/j.ijbiomac.2023.125358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Wound healing is a complex and dynamic process that needs an appropriate environment to overcome infection and inflammation to progress well. Wounds lead to morbidity, mortality, and a significant economic burden, often due to the non-availability of suitable treatments. Hence, this field has lured the attention of researchers and pharmaceutical industries for decades. As a result, the global wound care market is expected to be 27.8 billion USD by 2026 from 19.3 billion USD in 2021, at a compound annual growth rate (CAGR) of 7.6 %. Wound dressings have emerged as an effective treatment to maintain moisture, protect from pathogens, and impede wound healing. However, synthetic polymer-based dressings fail to comprehensively address optimal and quick regeneration requirements. Natural polymers like glucan and galactan-based carbohydrate dressings have received much attention due to their inherent biocompatibility, biodegradability, inexpensiveness, and natural abundance. Also, nanofibrous mesh supports better proliferation and migration of fibroblasts because of their large surface area and similarity to the extracellular matrix (ECM). Thus, nanostructured dressings derived from glucans and galactans (i.e., chitosan, agar/agarose, pullulan, curdlan, carrageenan, etc.) can overcome the limitations associated with traditional wound dressings. However, they require further development pertaining to the wireless determination of wound bed status and its clinical assessment. The present review intends to provide insight into such carbohydrate-based nanofibrous dressings and their prospects, along with some clinical case studies.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - John F Kennedy
- Chembiotech Labs, Institute of Science and Technology, Kyrewood House, Tenbury Wells WR158FF, UK
| |
Collapse
|
14
|
Maleki H, Doostan M, Farzaei MH, Seifi P, Miraghaee S, Doostan M. Achillea wilhelmsii-Incorporated Chitosan@Eudragit Nanoparticles Intended for Enhanced Ulcerative Colitis Treatment. AAPS PharmSciTech 2023; 24:112. [PMID: 37118443 DOI: 10.1208/s12249-023-02568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
Achillea wilhelmsii (A. wilhelmsii) contains several therapeutic phytochemicals, proposing a protective effect on inflammatory responses in autoimmune diseases such as ulcerative colitis (UC). However, its activities against UC encounter multiple obstacles. The current study aimed to formulate a colon-specific delivery of A. wilhelmsii for treating UC using chitosan nanoparticles (NPs) and Eudragit S100 as a mucoadhesive and pH-sensitive polymer, respectively. Core chitosan NP was loaded with A. wilhelmsii extract, followed by coating with Eudragit S100. Then, physicochemical characterizations of prepared NPs were conducted, and the anti-UC activity in the rat model was evaluated. The relevant physicochemical characterizations indicated the spherical NPs with an average particle size of 305 ± 34 nm and high encapsulation efficiency (88.6 ± 7.3%). The FTIR (Fourier transform infrared) analysis revealed the Eudragit coating and the extract loading, as well as the high radical scavenging ability of A. wilhelmsii was confirmed. The loaded NPs prevented the extract release in an acidic pH-mimicking medium and presented a complete release thereafter at a colonic pH. The loaded NPs markedly mitigated the induced UC lesions in rats, reflected by reducing inflammation, ulcer severity, and UC-related symptoms. Further, histopathological analysis exhibited reducing the extent of the inflammation and damage to colon tissue, and the determination of the involved pro-inflammatory cytokines in serum showed a significant reduction relative to free extract. The present results show that chitosan NPs containing A. wilhelmsii extract coated with Eudragit having proper physicochemical properties and substantial anti-inflammatory activity can significantly improve colonic lesions caused by UC.
Collapse
Affiliation(s)
- Hassan Maleki
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Parisa Seifi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Nanofiber-based systems against skin cancers: Therapeutic and protective approaches. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Doostan M, Doostan M, Mohammadi P, Khoshnevisan K, Maleki H. Wound healing promotion by flaxseed extract-loaded polyvinyl alcohol/chitosan nanofibrous scaffolds. Int J Biol Macromol 2023; 228:506-516. [PMID: 36572078 DOI: 10.1016/j.ijbiomac.2022.12.228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Impaired wound healing is a severe complication of sufferers, related to prolonged wound closure, a high infection rate, and eventually disabilities of organs. To aid resolve this issue, we developed the electrospun polyvinyl alcohol and chitosan (PVA/CS) nanofibrous scaffold-loaded flaxseed extract. The scaffold containing 10 wt% of the extract indicated a three-dimensional cross-network with a nano-scale diameter (257 ± 37 nm) and smooth surface. Also, the relevant analyses confirmed high water absorption, porosity, and wettability of the scaffold. Fourier-transform infrared (FTIR), degradation, and mechanical studies revealed the intact presence and loading of the extract into the scaffold, the complete degradation over 48 h, and a high tensile elastic modulus. Besides, the advanced scaffold displayed remarkable anti-oxidant and could inhibit the growth of both Gram-positive and negative bacteria compared to the free PVA/CS scaffold. Desired fibroblast viability and blood compatibility of flaxseed-loaded scaffold endorsed the biocompatibility for wound zones. The in vitro studies showed that the flaxseed-loaded scaffold resulted in an accelerated wound healing process and 100 % closure of the scratched area within 48 h. The results obtained reveal that the flaxseed-loaded PVA/CS electrospun scaffold could be effectively applied for wound healing promotion.
Collapse
Affiliation(s)
- Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Mandras N, Luganini A, Argenziano M, Roana J, Giribaldi G, Tullio V, Cavallo L, Prato M, Cavalli R, Cuffini AM, Allizond V, Banche G. Design, Characterization, and Biological Activities of Erythromycin-Loaded Nanodroplets to Counteract Infected Chronic Wounds Due to Streptococcus pyogenes. Int J Mol Sci 2023; 24:ijms24031865. [PMID: 36768189 PMCID: PMC9915227 DOI: 10.3390/ijms24031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes causes a wide spectrum of diseases varying from mild to life threatening, despite antibiotic treatment. Nanoparticle application could facilitate the foreign pathogen fight by increasing the antimicrobial effectiveness and reducing their adverse effects. Here, we designed and produced erythromycin-loaded chitosan nanodroplets (Ery-NDs), both oxygen-free and oxygen-loaded. All ND formulations were characterized for physico-chemical parameters, drug release kinetics, and tested for biocompatibility with human keratinocytes and for their antibacterial properties or interactions with S. pyogenes. All tested NDs possessed spherical shape, small average diameter, and positive Z potential. A prolonged Ery release kinetic from Ery-NDs was demonstrated, as well as a favorable biocompatibility on human keratinocytes. Confocal microscopy images showed ND uptake and internalization by S. pyogenes starting from 3 h of incubation up to 24 h. According to cell counts, NDs displayed long-term antimicrobial efficacy against streptococci significantly counteracting their proliferation up to 24 h, thanks to the known chitosan antimicrobial properties. Intriguingly, Ery-NDs were generally more effective (104-103 log10 CFU/mL), than free-erythromycin (105 log10 CFU/mL), in the direct killing of streptococci, probably due to Ery-NDs adsorption by bacteria and prolonged release kinetics of erythromycin inside S. pyogenes cells. Based on these findings, NDs and proper Ery-NDs appear to be the most promising and skin-friendly approaches for the topical treatment of streptococcal skin infections allowing wound healing during hypoxia.
Collapse
Affiliation(s)
- Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10126 Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, 10126 Turin, Italy
- Correspondence: (M.A.); (V.A.); Tel.: +39-011-670-7163 (M.A.); +39-011-670-5644 (V.A.)
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | | | - Vivian Tullio
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Mauro Prato
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, 10126 Turin, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
- Correspondence: (M.A.); (V.A.); Tel.: +39-011-670-7163 (M.A.); +39-011-670-5644 (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| |
Collapse
|
18
|
Hamed S, Emara M. Antibacterial and Antivirulence Activities of Acetate, Zinc Oxide Nanoparticles, and Vitamin C Against E. coli O157:H7 and P. aeruginosa. Curr Microbiol 2023; 80:57. [PMID: 36588146 PMCID: PMC9805986 DOI: 10.1007/s00284-022-03151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Infectious diseases remain one of the major health challenges worldwide due to the problem of antimicrobial resistance. Conventional antimicrobials have the disadvantage that bacteria rapidly acquire resistance to them, so alternatives must be developed to combat antibiotic resistance. Nanotechnology and the repurposing of existing drugs with known biological profiles are new approaches to replacing conventional antimicrobials. In this paper, we have tested the antibacterial activity of sodium acetate (NaA), vitamin C (VC), and zinc oxide nanoparticles (ZnO NPs) against Escherichia coli O157:H7 ATCC 51659 and Pseudomonas aeruginosa ATCC 27853. MIC values for tested compounds ranged from 0.08 to 6.5 mg ml-1, and the effect of combinations and safety profiles against HepG2 cell line of these compounds were also evaluated. At sub-MIC values, tested compounds had a potential antivirulence effect by inhibiting motility and reducing biofilm formation and maturation. Collectively, ZnO NPs and VC are considered safe alternatives to traditional antibiotics that are capable of reducing the development of antibiotic resistance in microbes. Graphical abstract representing the main aim and the final findings of our work. Spread of multidrug-resistant (MDR) bacterial strains created an urge for alternative safe antimicrobial agents. In this work, we found that ZnO NPs and vitamin C are potential candidates that could be used against MDR E.coli and P. aeruginosa.
Collapse
Affiliation(s)
- Selwan Hamed
- grid.412093.d0000 0000 9853 2750Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795 Egypt
| | - Mohamed Emara
- grid.412093.d0000 0000 9853 2750Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795 Egypt
| |
Collapse
|
19
|
Doostan M, Doostan M, Maleki H, Faridi Majidi R, Bagheri F, Ghanbari H. Co-electrospun poly(vinyl alcohol)/poly(ɛ-caprolactone) nanofiber scaffolds containing coffee and Calendula officinalis extracts for wound healing applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fabrication of a biocompatible nanofibrous dressing with the advantage of the inclusion of bioactive herbal extracts is a promising approach in skin tissue engineering and wound healing applications. Herbal extracts possess many properties to promote the wound healing process, such as antioxidant properties, anti-inflammation activities as well as enhancing fibroblasts proliferation and migration. In this study, Calendula officinalis ( C. officinalis) and coffee extracts were loaded into poly(vinyl alcohol)/poly(ɛ-caprolactone) (PVA/PCL) nanofibrous mats. The obtained scaffolds were then characterized using scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR), contact angle, and mechanical measurements. Also, the antioxidant activity, scratch assay, and cell viability of fibroblast cells were also evaluated. The results showed PVA/PCL scaffold loaded with 10 wt% C. officinalis and coffee extracts displayed smooth homogenous morphology with 317 ± 106 nm average diameter. Moreover, the relevant analyses confirmed that the extracts were incorporated into the nanofibers with suitable hydrophilicity and higher mechanical strength (4 ± 0.4 MPa). The antioxidant assay showed that IC50 values of coffee and C. officinalis extracts were 46 ± 1 ppm and 101 ± 4 ppm, successively, which presented a high antioxidant activity. The combination of both extracts showed a higher rate of migration than individual extracts with not detected cytotoxic effects on the human dermal fibroblast cells. In conclusion, our results confirmed that the coffee and C. officinalis extracts loaded PVA/PCL nanofibrous scaffolds could provide an appropriate construct for wound healing applications.
Collapse
Affiliation(s)
- Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Bagheri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
21
|
|
22
|
Design and development of novel formulation of Aloe Vera nanoemulsion gel contained erythromycin for topical antibacterial therapy: In vitro and in vivo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian A. An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromol Biosci 2022; 22:e2200014. [PMID: 35421269 DOI: 10.1002/mabi.202200014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
A wound can be surgical, cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research was to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, we focus on introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents. The perspectives and challenges for paving the way for future research in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Joorabloo A, Khorasani MT, Adeli H, Brouki Milan P, Amoupour M. Using artificial neural network for design and development of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| |
Collapse
|
26
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
27
|
Sharaf SM, Al-Mofty SED, El-Sayed ESM, Omar A, Abo Dena AS, El-Sherbiny IM. Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. Int J Biol Macromol 2021; 193:2029-2037. [PMID: 34774591 DOI: 10.1016/j.ijbiomac.2021.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023]
Abstract
Every year, about 1 out of 9 get burnt in Egypt, with a mortality rate of 37%, and they suffer from physical disfigurement and trauma. For the treatment of second-degree burns, we aim at making a smart bandage provided with control of drug release (using chitosan nanoparticles) to enhance the healing process. This bandage is composed of natural materials; namely, cellulose acetate (CA), chitosan, and propolis (bee resin) as the loaded drug. Cellulose acetate nanofibers were deacetylated by NaOH after optimizing the reaction time and the concentration of NaOH solution, and the product was confirmed with FTIR analysis. Chitosan/propolis nanoparticles were prepared by ion gelation method with size ranging from 100 to 200 nm and a polydispersity index of 0.3. Chitosan/propolis nanoparticles were preloaded in the CA solution to ensure homogeneity. Loaded deacetylated cellulose nanofibers have shown the highest hydrophobicity measured by contact angle. Cytotoxicity of propolis and chitosan/propolis nanoparticles were tested and the experimental IC50 value was about 137.5 and 116.0 μg/mL, respectively, with p-value ≤0.001. In addition, chitosan/propolis nanoparticles loaded into cellulose nanofibers showed a cell viability of 89.46% in the cell viability test. In-vivo experiments showed that after 21 days of treatment with the loaded nanofibers repairing of epithelial cells, hair follicles and sebaceous glands in the skin of the burn wound were found in albino-mice model.
Collapse
Affiliation(s)
- Sommaya M Sharaf
- Physics Department, Biophysics Branch, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Saif El-Din Al-Mofty
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 of October City 12578, Giza, Egypt
| | - El-Sayed M El-Sayed
- Physics Department, Biophysics Branch, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Amina Omar
- Physics Department, Biophysics Branch, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 of October City 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 of October City 12578, Giza, Egypt.
| |
Collapse
|
28
|
Maleki H, Khoshnevisan K, Sajjadi-Jazi SM, Baharifar H, Doostan M, Khoshnevisan N, Sharifi F. Nanofiber-based systems intended for diabetes. J Nanobiotechnology 2021; 19:317. [PMID: 34641920 PMCID: PMC8513238 DOI: 10.1186/s12951-021-01065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF system for DM complications in detail.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Farshad Sharifi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| |
Collapse
|
29
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
30
|
Kaiser P, Wächter J, Windbergs M. Therapy of infected wounds: overcoming clinical challenges by advanced drug delivery systems. Drug Deliv Transl Res 2021; 11:1545-1567. [PMID: 33611768 PMCID: PMC8236057 DOI: 10.1007/s13346-021-00932-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced and a future perspective is provided.
Collapse
Affiliation(s)
- Pia Kaiser
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Al-Saeedi SI, Al-Kadhi NS, Al-Senani GM, Almaghrabi OA, Nafady A. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds. Int J Biol Macromol 2021; 182:464-471. [PMID: 33838197 DOI: 10.1016/j.ijbiomac.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023]
Abstract
It is generally believed that the most challenging impediment for the utilization of cellulose acetate (CA) in the medical field is its hydrophobicity and disability to poison the harmful microbes. Therefore, in this contribution, we aimed to prepare an environmentally scaffold-based CA loaded with copper nanoparticles (CuONPs), which are expected to not only improve the hydrophilicity of the prepared nanofibers, but also have an effective ability to kill such harmful and infectious microbes that are abundant in wounds. The obtained results attested that the generated nanofibers became thicker with increasing the content of CuONPs in CA nanofibers. The roughness average increased from 143.2 to 157.1 nm, whereas the maximum height of the roughness (Rt) increased from 400.8 to 479.9 nm as going from the lowest to the highest content of CuONPs. Additionally, the contact angle of the prepared nanofibers decreased from 105.3° (CA alone) to 85.4° for CuONPs@CA. Significantly, biological studies revealed that cell viability and anti-bacterial potency were improved upon incorporating CuONPs into CA solution. Correspondingly, their inhibition zones reached 18 ± 3 mm, and 16 ± 2 mm for nanofibrous scaffolds having 12.0CuO@CA, besides raising the cell viability from 91.3 ± 4% to 96.4 ± 4% for 0.0CuO@CA, and 12.0CuO@CA, respectively, thereby implying that the fabricated CuONPs@CA nanocomposite has biocompatibility towards fibroblast cells. Thus, introducing biological activity into CA nanofibers via loading with CuONPs makes it suitable for numerous biomedical applications, particularly as an environmentally benign wound dressing fibers.
Collapse
Affiliation(s)
- Sameerah I Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Nada S Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
32
|
A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int J Biol Macromol 2021; 183:790-810. [PMID: 33965480 DOI: 10.1016/j.ijbiomac.2021.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Abstract
In recent years, the incidence of cancer is increasing every day due to poor quality of life (industrialization of life). Therefore, the treatment of cancer has received much attention from therapists. So far, many anticancer drugs have been used to treat cancer patents. However, the direct use of the anticancer drugs has the adverse side effects for patents and several limitations to treat process. Natural chitosan nanofibers prepared by electrospinning method have unique properties such as high surface area, high porosity, suitable mechanical properties, nontoxicity, biocompatibility, biodegradability, biorenewable, low immunogenicity, better clinical functionality, analogue to extracellular model, and easy production in large scale. Therefore, this bio-polymer is a very suitable case to deliver of the anti-cancer drugs to treat cancer patents. In this review summarizes the electrospinning synthesis of chitosan and its therapeutic application for the various cancer treatment.
Collapse
|
33
|
Vitamin D 3-loaded electrospun cellulose acetate/polycaprolactone nanofibers: Characterization, in-vitro drug release and cytotoxicity studies. Int J Biol Macromol 2021; 181:82-98. [PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023]
Abstract
Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
Collapse
|