1
|
Abu Elella MH, Kolawole OM. Recent advances in modified chitosan-based drug delivery systems for transmucosal applications: A comprehensive review. Int J Biol Macromol 2024; 277:134531. [PMID: 39116977 DOI: 10.1016/j.ijbiomac.2024.134531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Recently, transmucosal drug delivery systems (TDDSs) have been extensively studied because they protect therapeutic agents from degradation; improve drug residence time at the mucosal membranes; and facilitate sustained drug release for a prolonged period. Chitosan is a well-researched polymeric excipient due to its biocompatibility, non-toxicity, biodegradability, mucoadhesive, antimicrobial, and low immunogenicity. Its limited mucoadhesiveness in the physiological environment necessitated its chemical modification. This review highlights the recent advances in the chemical modification of chitosan with various chemical groups to generate various functionalized chitosan derivatives, such as thiolated, acrylated, methacrylated, boronated, catechol, and maleimide-functionalized chitosans with superior mucoadhesive capabilities compared to the parent chitosan. Moreover, it presents the different prepared dosage forms, such as tablets, hydrogels, films, micro/nanoparticles, and liposomes/niosomes for drug administration within various mucosal routes including oral, buccal, nasal, ocular, colonic, intravesical, and vaginal routes. The reported data from preclinical studies of these pharmaceutical formulations have revealed the controlled and target-specific delivery of therapeutics because of their formation of covalent bonds with thiol groups on the mucosal surface. All functionalized chitosan derivatives exhibited long drug residence time on mucosal surfaces and sustainable drug release with excellent cellular permeability, drug efficacy, and biocompatibility. These promising data could be translated from the research laboratories to the clinics with consistent and intensive research effort.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6AD, United Kingdom; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | |
Collapse
|
2
|
Mork S, Johannessen M, Škalko-Basnet N, Jøraholmen MW. Chitosan and liposomal delivery systems for epicatechin or propyl gallate targeting localized treatment of vulvovaginal candidiasis. Int J Pharm 2024; 662:124489. [PMID: 39032871 DOI: 10.1016/j.ijpharm.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Natural polyphenols are promising alternatives to antifungals for novel treatments of vulvovaginal candidiasis (VVC) in an era of antimicrobial resistance. However, polyphenols are poorly soluble and prone to degradation. To overcome their limitations, we propose incorporation in liposomes. The study aimed to develop chitosan and liposome comprising delivery systems for epicatechin (EC) or propyl gallate (PG) as treatment of VVC. EC was selected for its antioxidative properties and PG as an ester of antifungal gallic acid. To improve formulation retention at vaginal site, mucoadhesive chitosan was introduced into formulation as liposomal surface coating or hydrogel due to intrinsic antifungal properties. These polyphenol-loaded liposomes exhibited an average size of 125 nm with a 64 % entrapment efficiency (for both polyphenols). A sustained in vitro polyphenol release was seen from liposomes, particularly in chitosan hydrogel (p < 0.01 or lower). Viscosity was evaluated since increased viscosity upon mucin contact indicated adhesive bond formation between chitosan and mucin confirming mucoadhesiveness of formulations. Antifungal activity was evaluated by the broth microdilution method on Candida albicans CRM-10231. Unlike PG, incorporation of EC in liposomes enabled antifungal activity. Fungicidal activity of chitosan was confirmed both when used as liposomal coating material and as hydrogel vehicle.
Collapse
Affiliation(s)
- Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
3
|
Zheng LX, Yu Q, Peng L, Li Q. Magnetically targeted lidocaine sustained-release microspheres: optimization, pharmacokinetics, and pharmacodynamic radius of effect. Reg Anesth Pain Med 2024:rapm-2024-105634. [PMID: 39223097 DOI: 10.1136/rapm-2024-105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to optimize the formulation of magnetically targeted lidocaine microspheres, reduce the microsphere particle size, and increase the drug loading and encapsulation rate of lidocaine. The optimized microspheres were characterized, and their pharmacokinetics and effective radii of action were studied. METHODS The preparation of magnetically targeted lidocaine microspheres was optimized using ultrasonic emulsification-solvent evaporation. The Box-Behnken design method and response surface method were used for optimization. The optimized microspheres were characterized and tested for their in vitro release. Blood concentrations were analyzed using a non-compartment model, and the main pharmacokinetic parameters (half-life (t1/2 ), maximum blood concentration, area under the blood concentration-time curve (AUC), time to peak (Tmax ), and mean retention time (MRT) were calculated. Pathological sections were stained to study the safety of the microsphere tissues. A rabbit sciatic nerve model was used to determine the "standard time (t0 )" and effective radius of the microspheres. RESULTS The optimized lidocaine microspheres exhibited significantly reduced particle size and increased drug loading and encapsulation rates. Pharmacokinetic experiments showed that the t1/2 , Tmax , and MRT of magnetically targeted lidocaine microspheres were significantly prolonged in the magnetic field, and the AUC0-48 and AUC0-∞ were significantly decreased. Its pharmacodynamic radius was 31.47 mm. CONCLUSION Magnetically targeted lidocaine microspheres provide sustained long-lasting release, neurotargeting, nerve blocking, and high tissue safety. This preparation has a significantly low blood concentration and a slow release in vivo, which can reduce local anesthetic entry into the blood. This may be a novel and effective method for improving postoperative comfort and treating chronic pain. This provides a countermeasure for exploring the size of the magnetic field for the application of magnetic drug-carrying materials.
Collapse
Affiliation(s)
- Ling-Xi Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| | - Qian Yu
- Urban Vocational College of Sichuan, Chengdu, Sichuan, China
| | - Lin Peng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| | - Qiang Li
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Chen L, Xie Y, Chen X, Li H, Lu Y, Yu H, Zheng D. O-carboxymethyl chitosan in biomedicine: A review. Int J Biol Macromol 2024; 275:133465. [PMID: 38945322 DOI: 10.1016/j.ijbiomac.2024.133465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
O-carboxymethyl chitosan (O-CMC) is a chitosan derivative produced through the substitution of hydroxyl (-OH) functional groups in glucosamine units with carboxymethyl (-CH2COOH) substituents, effectively addressing the inherent solubility issues of chitosan in aqueous solutions. O-CMC has garnered significant interest due to its enhanced solubility, elevated viscosity, minimal toxicity, and advantageous biocompatibility properties. Furthermore, O-CMC demonstrates antibacterial, antifungal, and antioxidant characteristics, rendering it a promising candidate for various biomedical uses such as wound healing, tissue engineering, anti-tumor therapies, biosensors, and bioimaging. Additionally, O-CMC is well-suited for the fabrication of nanoparticles, hydrogels, films, microcapsules, and tablets, offering opportunities for effective drug delivery systems. This review outlines the distinctive features of O-CMC, offers analyses of advancements and future potential based on current research, examines significant obstacles for clinical implementation, and foresees its ongoing significant impacts in the realm of biomedicine.
Collapse
Affiliation(s)
- Lingbin Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yandi Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hengyi Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
6
|
Pramanik S, Alhomrani M, Alamri AS, Alsanie WF, Nainwal P, Kimothi V, Deepak A, Sargsyan AS. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Biomed Mater 2024; 19:042008. [PMID: 38768611 DOI: 10.1088/1748-605x/ad4df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have gained significant recognition as versatile biomaterials in the biomedical domain. GelMA hydrogels emulate vital characteristics of the innate extracellular matrix by integrating cell-adhering and matrix metalloproteinase-responsive peptide motifs. These features enable cellular proliferation and spreading within GelMA-based hydrogel scaffolds. Moreover, GelMA displays flexibility in processing, as it experiences crosslinking when exposed to light irradiation, supporting the development of hydrogels with adjustable mechanical characteristics. The drug delivery landscape has been reshaped by GelMA hydrogels, offering a favorable platform for the controlled and sustained release of therapeutic actives. The tunable physicochemical characteristics of GelMA enable precise modulation of the kinetics of drug release, ensuring optimal therapeutic effectiveness. In tissue engineering, GelMA hydrogels perform an essential role in the design of the scaffold, providing a biomimetic environment conducive to cell adhesion, proliferation, and differentiation. Incorporating GelMA in three-dimensional printing further improves its applicability in drug delivery and developing complicated tissue constructs with spatial precision. Wound healing applications showcase GelMA hydrogels as bioactive dressings, fostering a conducive microenvironment for tissue regeneration. The inherent biocompatibility and tunable mechanical characteristics of GelMA provide its efficiency in the closure of wounds and tissue repair. GelMA hydrogels stand at the forefront of biomedical innovation, offering a versatile platform for addressing diverse challenges in drug delivery, tissue engineering, and wound healing. This review provides a comprehensive overview, fostering an in-depth understanding of GelMA hydrogel's potential impact on progressing biomedical sciences.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India
| | - Vishwadeepak Kimothi
- Himalayan Institute of Pharmacy and Research, Rajawala, Dehradun, Uttrakhand, India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Armen S Sargsyan
- Scientific and Production Center 'Armbiotechnology' NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| |
Collapse
|
7
|
He Y, Chen N, Zang M, Zhang J, Zhang Y, Lu H, Zhao Q, Mao Y, Yuan Y, Wang S, Gao Y. Glucose-responsive insulin microneedle patches for long-acting delivery and release visualization. J Control Release 2024; 368:430-443. [PMID: 38447813 DOI: 10.1016/j.jconrel.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Limited drug loading and incomplete drug release are two major obstacles that traditional polymeric microneedles (MNs) have to overcome. For smart controlled-release MNs, since drug release duration is uncertain, a clear indication of the finish of drug release is also important for patient guidance on the timing of the next dose. In this study, MN with a triple structure of a glucose-responsive shell, loaded insulin powders and a colored propelling inner core (inspired by the mechanism of osmotic pump) was innovatively constructed. The MN patch could release insulin according to blood glucose levels (BGLs) and had excellent drug loading, more complete drug release, and good drug stability, which significantly prolonged the normoglycemic time. An approximately 0.3 cm2 patch has a hypoglycemic effect on diabetic mice for up to 24 h. Moreover, the fading of the inner core could indicate the release process of the loaded drug and can help to facilitate uninterrupted closed loop therapy for patients. The designed triple MN structure is also suitable, and can be used in the design of other smart MN drug delivery systems to further improve their drug loading capacity and simultaneously achieve more complete, smart controlled and visualized drug release.
Collapse
Affiliation(s)
- Ye He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nanxi Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingming Zang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Youxi Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yikun Gao
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Vaidya G, Pramanik S, Kadi A, Rayshan AR, Abualsoud BM, Ansari MJ, Masood R, Michaelson J. Injecting hope: chitosan hydrogels as bone regeneration innovators. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:756-797. [PMID: 38300215 DOI: 10.1080/09205063.2024.2304952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Spontaneous bone regeneration encounters substantial restrictions in cases of bone defects, demanding external intervention to improve the repair and regeneration procedure. The field of bone tissue engineering (BTE), which embraces a range of disciplines, offers compelling replacements for conventional strategies like autografts, allografts, and xenografts. Among the diverse scaffolding materials utilized in BTE applications, hydrogels have demonstrated great promise as templates for the regeneration of bone owing to their resemblance to the innate extracellular matrix. In spite of the advancement of several biomaterials, chitosan (CS), a natural biopolymer, has garnered significant attention in recent years as a beneficial graft material for producing injectable hydrogels. Injectable hydrogels based on CS formulations provide numerous advantages, including their capacity to absorb and preserve a significant amount of water, their minimally invasive character, the existence of porous structures, and their capability to adapt accurately to irregular defects. Moreover, combining CS with other naturally derived or synthetic polymers and bioactive materials has displayed its effectiveness as a feasible substitute for traditional grafts. We aim to spotlight the composition, production, and physicochemical characteristics and practical utilization of CS-based injectable hydrogels, explicitly focusing on their potential implementations in bone regeneration. We consider this review a fundamental resource and a source of inspiration for future research attempts to pioneer the next era of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Gayatri Vaidya
- Department of Studies and Research in Food Technology, Davangere University, Davangere, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Ahmed Raheem Rayshan
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Jacob Michaelson
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
9
|
Damodaran A, Zachariah SM, Nair SC. Novel therapeutic approaches for the management of hepatitis infections. Ther Deliv 2024; 15:211-232. [PMID: 38410933 DOI: 10.4155/tde-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.
Collapse
Affiliation(s)
- Aswin Damodaran
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Subin Mary Zachariah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Sreeja Chandrasekharan Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
10
|
Gao Y, Wu J, Shen J, Xu Y, Li L, Wang W, Zhou N, Zhang M. Chitosan modified magnetic nanocomposite for biofilm destruction and precise photothermal/photodynamic therapy. Int J Biol Macromol 2024; 259:129402. [PMID: 38219940 DOI: 10.1016/j.ijbiomac.2024.129402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Getting rid of the biofilms is a major challenge when treating skin and soft tissue infections (SSTI), an inflammatory illness brought on by bacteria. Traditional magnetic materials have a limited dispersibility and a biofilm permeable property, making it challenging to remove biofilms and causing infection to linger. To solve these problems, we developed a kind of magnetic composite nanoplatform coated with indocyanine green carbon dots and modified with chitosan modification (Fe-ICGCDs@CS). Fe-ICGCDs@CS has high dispersibility and improves the conductivity of biofilms under magnetic action. Fe-ICGCDs@CS can adsorb bacteria via the positive charge and achieve precise photothermal sterilization and photodynamic therapy (PDT). Moreover, by catalyzing hydrogen peroxide (2 mM), Fe-ICGCDs@CS can produce oxygen to relieve the anoxic state in the deep layer of biofilms and activate dormant bacteria to make them sensitive to external stimuli. All in all, unlike the common "just kill" sterilization model, Fe-ICGCDs@CS can accurately kill bacteria and be recovered by an external magnetic field at the end of treatment, thus reducing the potential biological toxicity of nanomaterials. Therefore, the proposed Fe-ICGCDs@CS provides a new antibacterial method with low biotoxicity for clinical application in the treatment of biofilm infections.
Collapse
Affiliation(s)
- Yumeng Gao
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jing Wu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
11
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
12
|
Li YX, Bao YT, Hu JB. Engineering of targeting antioxidant polypeptide nanopolyplexes for the treatment of acute lung injury. Int J Biol Macromol 2024; 254:127872. [PMID: 37939759 DOI: 10.1016/j.ijbiomac.2023.127872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The pathogenesis of acute lung injury (ALI) involves various mechanisms, such as oxidative stress, inflammation, and epithelial cell apoptosis. However, current drug therapies face limitations due to issues like systemic distribution, drug degradation in vivo, and hydrophobicity. To address these challenges, we developed a pH-responsive nano-drug delivery system for delivering antioxidant peptides to treat ALI. In this study, we utilized low molecular weight chitosan (LMWC) and hyaluronic acid (HA) as carrier materials. LMWC carries a positive charge, while HA carries a negative charge. By stirring the two together, the electrostatic adsorption between LMWC and HA yielded aggregated drug carriers. To specifically target the antioxidant drug WNWAD to lung lesions and enhance therapeutic outcomes for ALI, we created a targeted drug delivery system known as HA/LMWC@WNWAD (NPs) through a 12-h stirring process. In our research, we characterized the particle size and drug release of NPs. Additionally, we assessed the targeting ability of NPs. Lastly, we evaluated the improvement of lung injury at the cellular and animal levels to investigate the therapeutic mechanism of this drug targeting delivery system.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ya-Ting Bao
- College of Medical, Ningbo University, Ningbo 315211, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
13
|
Biomaterial therapeutic strategies for treatment of bacterial lung infections. Biofilm 2023; 5:100111. [PMID: 36909663 PMCID: PMC9999167 DOI: 10.1016/j.bioflm.2023.100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Bacterial infections of the lung frequently occur as a secondary infection to many respiratory viral infections and conditions, including influenza, COVID-19, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). Currently, clinical standard treats bacterial infections of the lung with antibiotic drugs. However, the use of broad-spectrum antibiotics can disrupt host microbiomes, lead to patient discomfort, and current clinical settings face the constantly increasing threat of drug-resistant bacteria. Biofilms further obstruct effective treatment due to their protective matrix layer, which shields bacteria from both the host immune system and antimicrobial drugs and subsequently promotes drug resistance. Alternative antimicrobial agents, including bacteriophages and antimicrobial peptides, have been utilized to treat drug-resistant bacteria. However, these antimicrobial agents have significant limitations pertaining to their ability to arrive at infection sites without compromised function and ability to persist over an extended period to fully treat infections. Enhanced delivery strategies present great promise in addressing these issues by using micro/nanoparticle carriers that shield antimicrobial agents in transit and result in sustained release, enhancing subsequent therapeutic effect and can even be modulated to be multi-functional to further improve recovery following bacterial infection.
Collapse
|
14
|
Fu M, Yang C, Sun G. Recent advances in immunomodulatory hydrogels biomaterials for bone tissue regeneration. Mol Immunol 2023; 163:48-62. [PMID: 37742359 DOI: 10.1016/j.molimm.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There is a high incidence of fractures in clinical practice and therapy. The repairment of critical size defects in the skeletal system remains a huge challenge for surgeons and researchers, which can be overcame by the application of bone tissue-engineered biomaterials. An increasing number of investigations have revealed that the immune system plays a vital role in the repair of bone defects, especially macrophages, which can modulate the integration of biomaterials and bone regeneration in multiple ways. Therefore, it has become increasingly important in regenerative medicine to regulate macrophage polarization to prevent inflammation caused by biomaterial implantation. Recent studies have stressed the importance of hydrogel-based modifications and the incorporation of various cellular and molecular signals for regulating immune responses to promote bone tissue regeneration and integrate biomaterials. In this review, we first elaborate briefly on the described the general physiological mechanism and process of bone tissue regeneration. Then, we summarized the immunomodulatory role macrophages play in bone repair. In addition, the role of hydrogel-based immune modification targeting macrophage modulation in accelerating and enhancing bone tissue regeneration was also discussed. Finally, we highlighted future directions and research strategies related to hydrogel optimization for the regulation of the immune response during bone regeneration and healing.
Collapse
Affiliation(s)
- Mei Fu
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chensong Yang
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guixin Sun
- Guixin Sun - Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
15
|
Wang J, Yao M, Zou J, Ding W, Sun M, Zhuge Y, Gao F. pH-Sensitive Nanoparticles for Colonic Delivery Anti-miR-301a in Mouse Models of Inflammatory Bowel Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2797. [PMID: 37887947 PMCID: PMC10610125 DOI: 10.3390/nano13202797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Though the anti-miR-301a (anti-miR) is a promising treatment strategy for inflammatory bowel disease (IBD), the degradability and the poor targeting of the intestine are a familiar issue. This study aimed to develop a multifunctional oral nanoparticle delivery system loaded with anti-miR for improving the targeting ability and the therapeutic efficacy. The HA-CS/ES100/PLGA nanoparticles (HCeP NPs) were prepared using poly (lactic-co-glycolic acid) copolymer (PLGA), enteric material Eudragit®S100 (ES100), chitosan (CS), and hyaluronic acid (HA). The toxicity of nanoparticles was investigated via the Cell Counting Kit-8, and the cellular uptake and inflammatory factors of nanoparticles were further studied. Moreover, we documented the colon targeting and pharmacodynamic properties of nanoparticles. The nanoparticles with uniform particle size exhibited pH-sensitive release, favorable gene protection, and storage stability. Cytology experiments showed that anti-miR@HCeP NPs improved the cellular uptake through HA and reduced pro-inflammatory factors. Administering anti-miR@HCeP NPs orally to IBD mice markedly reduced their pro-inflammatory factors levels and disease activity indices. We also confirmed that anti-miR@HCeP NPs mostly accumulated in the colon site, and effectively repaired the intestinal barrier, as well as relieved intestinal inflammation. The above nanoparticle is a candidate of the treatment for IBD due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Junshan Wang
- Department of Gastroenterology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 202157, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Mingyue Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Park GR, Gwak MA, Choi YH, Park WH. pH-sensitive gallol-rich chitosan hydrogel beads for on-off controlled drug delivery. Int J Biol Macromol 2023; 240:124346. [PMID: 37028624 DOI: 10.1016/j.ijbiomac.2023.124346] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Malignant tumors have emerged as a serious health issue, and the interest in developing pH-sensitive polymers for site-specific drug delivery has increased. The physical and/or chemical properties of pH-sensitive polymers depend on the pH, and thus, drugs can be released by cleaving dynamic covalent and/or noncovalent bonds. In this study, gallic acid (GA) was conjugated to chitosan (CS) to prepare self-crosslinked hydrogel beads containing Schiff base (imine bond) crosslinks. The CS-GA hydrogel beads were formed by the dropwise addition of the CS-GA conjugate solution into a Tris-HCl buffer solution (TBS, pH 8.5). The pH-sensitivity of pristine CS was significantly enhanced following the introduction of GA moiety, and as a result, the CS-GA hydrogel beads swelled more than approximately 5000 % at pH 4.0, indicating an excellent swelling/deswelling ability of the beads at different pH (pH 4.0 and 8.5). The reversible breakage/recovery of the imine crosslinks in the CS-GA hydrogel beads was confirmed through X-ray photoelectron spectroscopic and rheological studies. Finally, Rhodamine B was loaded onto the hydrogel beads as a model drug to investigate the pH-sensitive drug release behavior. At pH 4, the drug was released up to approximately 83 % within 12 h. The findings indicate that the CS-GA hydrogel beads have great potential as a drug delivery system that is sensitive to acidic tumor sites in the body.
Collapse
|
17
|
Pourseif T, Ghafelehbashi R, Abdihaji M, Radan N, Kaffash E, Heydari M, Naseroleslami M, Mousavi-Niri N, Akbarzadeh I, Ren Q. Chitosan -based nanoniosome for potential wound healing applications: Synergy of controlled drug release and antibacterial activity. Int J Biol Macromol 2023; 230:123185. [PMID: 36623618 DOI: 10.1016/j.ijbiomac.2023.123185] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study aims to develop a niosomal platform which can delivery drugs such as tetracycline hydrochloride (TCH) to treat bacterial infections in wounds. To this end, chitosan (CS) was used to obtain a controlled drug release and at the same time antibacterial activity. By design of experiments the niosome encapsulated TCH (TCH-Nio) were optimized for their particle size and encapsulation efficiency, followed by analysis of the release profile of TCH and stability of TCH-Nio and TCH-Nio@CS. The antibacterial activity and cytotoxicity of the fabricated nanoparticles were investigated as well. The release rate of TCH from TCH-Nio@CS in all conditions is less than TCH-Nio. In addition, higher temperature increases the release rate of drug from these formulations. The size, polydispersity index, and encapsulation efficacy of TCH-Nio and TCH-Nio@CS were more stable in 4 °C compared to 25 °C. TCH, TCH-Nio, and TCH-Nio@CS had MIC values of 7.82, 3.91, and 1.95 μg/mL for Escherichia coli, 3.91, 1.95, and 0.98 μg/mL for Pseudomonas aeruginosa, and 1.96, 0.98, and 0.49 μg/mL for Staphylococcus aureus, respectively. Coating of chitosan on niosome encapsulated TCH (TCH-Nio@CS) led to a reduced burst release of TCH from niosome (TCH-Nio), and enabled 2-fold higher antibacterial and anti-biofilm activity against the tested bacterial pathogens E. coli, P. aeruginosa and S. aureus, compared to the uncoated TCH-Nio, and 4-folder higher than the TCH solution, suggesting the synergetic effect of niosome encapsulation and chitosan coating. Moreover, the formulated niosomes displayed no in vitro toxicity toward the human foreskin fibroblast cells (HFF). Both TCH-Nio and TCH-Nio@CS were found to down-regulate the expression of certain biofilm genes, i.e., csgA, ndvB, and icaA in the tested bacteria, which might partially explain the improved antibacterial activity compared to TCH. The obtained results demonstrated that TCH-Nio@CS is capable of controlled drug release, leading to high antibacterial efficacy. The established platform of TCH-Nio@CS enlighten a clinic potential toward the treatment of bacterial infections in skin wounds, dental implants and urinary catheter.
Collapse
Affiliation(s)
- Tara Pourseif
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammadreza Abdihaji
- Department of Biology, Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Niloufar Radan
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Kaffash
- Department of Pharmaceutics, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
18
|
Platon IV, Ghiorghita CA, Lazar MM, Raschip IE, Dinu MV. Chitosan Sponges with Instantaneous Shape Recovery and Multistrain Antibacterial Activity for Controlled Release of Plant-Derived Polyphenols. Int J Mol Sci 2023; 24:4452. [PMID: 36901883 PMCID: PMC10002852 DOI: 10.3390/ijms24054452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Biomass-derived materials with multiple features are seldom reported so far. Herein, new chitosan (CS) sponges with complementary functions for point-of-use healthcare applications were prepared by glutaraldehyde (GA) cross-linking and tested for antibacterial activity, antioxidant properties, and controlled delivery of plant-derived polyphenols. Their structural, morphological, and mechanical properties were thoroughly assessed by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and uniaxial compression measurements, respectively. The main features of sponges were modulated by varying the CS concentration, cross-linking ratio, and gelation conditions (either cryogelation or room-temperature gelation). They exhibited complete water-triggered shape recovery after compression, remarkable antibacterial properties against Gram-positive (Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes)) and Gram-negative (Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium)) strains, as well as good radical scavenging activity. The release profile of a plant-derived polyphenol, namely curcumin (CCM), was investigated at 37 °C in simulated gastrointestinal media. It was found that CCM release was dependent on the composition and the preparation strategy of sponges. By linearly fitting the CCM kinetic release data from the CS sponges with the Korsmeyer-Peppas kinetic models, a pseudo-Fickian diffusion release mechanism was predicted.
Collapse
Affiliation(s)
| | | | | | | | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
19
|
Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules 2023; 28:molecules28041963. [PMID: 36838951 PMCID: PMC9959713 DOI: 10.3390/molecules28041963] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Collapse
|
20
|
Albasri OWA, Kumar PV, Rajagopal MS. Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules 2023; 28:1833. [PMID: 36838817 PMCID: PMC9965590 DOI: 10.3390/molecules28041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
The oral delivery system is very important and plays a significant role in increasing the solubility of drugs, which eventually will increase their absorption by the digestive system and enhance the drug bioactivity. This study was conducted to synthesize a novel curcumin nano lipid carrier (NLC) and use it as a drug carrier with the help of computational molecular docking to investigate its solubility in different solid and liquid lipids to choose the optimum lipids candidate for the NLCs formulation and avoid the ordinary methods that consume more time, materials, cost, and efforts during laboratory experiments. The antiviral activity of the formed curcumin-NLC against SARS-CoV-2 (COVID-19) was assessed through a molecular docking study of curcumin's affinity towards the host cell receptors. The novel curcumin drug carrier was synthesized as NLC using a hot and high-pressure homogenization method. Twenty different compositions of the drug carrier (curcumin nano lipid) were synthesized and characterized using different physicochemical techniques such as UV-Vis, FTIR, DSC, XRD, particle size, the zeta potential, and AFM. The in vitro and ex vivo studies were also conducted to test the solubility and the permeability of the 20 curcumin-NLC formulations. The NLC as a drug carrier shows an enormous enhancement in the solubility and permeability of the drug.
Collapse
Affiliation(s)
| | - Palanirajan Vijayaraj Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | | |
Collapse
|
21
|
Natural Biopolymers for Bone Tissue Engineering: A Brief Review. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
23
|
Hemmingsen LM, Panchai P, Julin K, Basnet P, Nystad M, Johannessen M, Škalko-Basnet N. Chitosan-based delivery system enhances antimicrobial activity of chlorhexidine. Front Microbiol 2022; 13:1023083. [PMID: 36246245 PMCID: PMC9557914 DOI: 10.3389/fmicb.2022.1023083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Infected chronic skin wounds and other skin infections are increasingly putting pressure on the health care providers and patients. The pressure is especially concerning due to the rise of antimicrobial resistance and biofilm-producing bacteria that further impair treatment success. Therefore, innovative strategies for wound healing and bacterial eradication are urgently needed; utilization of materials with inherent biological properties could offer a potential solution. Chitosan is one of the most frequently used polymers in delivery systems. This bioactive polymer is often regarded as an attractive constituent in delivery systems due to its inherent antimicrobial, anti-inflammatory, anti-oxidative, and wound healing properties. However, lipid-based vesicles and liposomes are generally considered more suitable as delivery systems for skin due to their ability to interact with the skin structure and provide prolonged release, protect the antimicrobial compound, and allow high local concentrations at the infected site. To take advantage of the beneficial attributes of the lipid-based vesicles and chitosan, these components can be combined into chitosan-containing liposomes or chitosomes and chitosan-coated liposomes. These systems have previously been investigated for use in wound therapy; however, their potential in infected wounds is not fully investigated. In this study, we aimed to investigate whether both the chitosan-containing and chitosan-coated liposomes tailored for infected wounds could improve the antimicrobial activity of the membrane-active antimicrobial chlorhexidine, while assuring both the anti-inflammatory activity and cell compatibility. Chlorhexidine was incorporated into three different vesicles, namely plain (chitosan-free), chitosan-containing and chitosan-coated liposomes that were optimized for skin wounds. Their release profile, antimicrobial activities, anti-inflammatory properties, and cell compatibility were assessed in vitro. The vesicles comprising chitosan demonstrated slower release rate of chlorhexidine and high cell compatibility. Additionally, the inflammatory responses in murine macrophages treated with these vesicles were reduced by about 60% compared to non-treated cells. Finally, liposomes containing both chitosan and chlorhexidine demonstrated the strongest antibacterial effect against Staphylococcus aureus. Both chitosan-containing and chitosan-coated liposomes comprising chlorhexidine could serve as excellent platforms for the delivery of membrane-active antimicrobials to infected wounds as confirmed by improved antimicrobial performance of chlorhexidine.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Pimmat Panchai
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Julin
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Purusotam Basnet
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Mona Nystad
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- IVF Clinic, Women’s Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Nataša Škalko-Basnet,
| |
Collapse
|
24
|
Wu ZC, Liu XY, Liu JY, Piao JS, Piao MG. Preparation of Betulinic Acid Galactosylated Chitosan Nanoparticles and Their Effect on Liver Fibrosis. Int J Nanomedicine 2022; 17:4195-4210. [PMID: 36134203 PMCID: PMC9484277 DOI: 10.2147/ijn.s373430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Aim Liver fibrosis is mainly characterized by the formation of fibrous scars. Galactosylated chitosan (GC) has gained increasing attention as a liver-targeted drug carrier in recent years. The present study aimed to investigate the availability of betulinic acid-loaded GC nanoparticles (BA-GC-NPs) for liver protection. Covalently-conjugated galactose, recognized by asialoglycoprotein receptors exclusively expressed in hepatocytes, was employed to target the liver. Materials and Methods Galactose was coupled to chitosan by chemical covalent binding. BA-GC-NPs were synthesized by wrapping BA into NPs via ion-crosslinking method. The potential advantage of BA-GC-NP as a liver-targeting agent in the treatment of liver fibrosis has been demonstrated in vivo and in vitro. Results BA-GC-NPs with diameters <200 nm were manufactured in a virtually spherical core-shell arrangement, and BA was released consistently and continuously for 96 h, as assessed by an in vitro release assay. According to the safety evaluation, BA-GC-NPs demonstrated good biocompatibility at the cellular level and did not generate any inflammatory reaction in mice. Importantly, BA-GC-NPs showed an inherent liver-targeting potential in the uptake behavioral studies in cells and bioimaging tests in vivo. Efficacy tests revealed that administering BA-GC-NPs in a mouse model of liver fibrosis reduced the degree of liver injury in mice. Conclusion The findings showed that BA-GC-NPs form a safe and effective anti-hepatic fibrosis medication delivery strategy.
Collapse
Affiliation(s)
- Zi Chao Wu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Research Institute, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, 050035, People's Republic of China
| | - Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jia Yan Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jing Shu Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, People's Republic of China
| |
Collapse
|
25
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
26
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
27
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
28
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
29
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
30
|
Huang J, Ding Y, Yao J, Zhang M, Zhang Y, Xie Z, Zuo J. Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19. Vaccines (Basel) 2022; 10:vaccines10030405. [PMID: 35335037 PMCID: PMC8952855 DOI: 10.3390/vaccines10030405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is still prevalent around the globe. Although some SARS-CoV-2 vaccines have been distributed to the population, the shortcomings of vaccines and the continuous emergence of SARS-CoV-2 mutant virus strains are a cause for concern. Thus, it is vital to continue to improve vaccines and vaccine delivery methods. One option is nasal vaccination, which is more convenient than injections and does not require a syringe. Additionally, stronger mucosal immunity is produced under nasal vaccination. The easy accessibility of the intranasal route is more advantageous than injection in the context of the COVID-19 pandemic. Nanoparticles have been proven to be suitable delivery vehicles and adjuvants, and different NPs have different advantages. The shortcomings of the SARS-CoV-2 vaccine may be compensated by selecting or modifying different nanoparticles. It travels along the digestive tract to the intestine, where it is presented by GALT, tissue-resident immune cells, and gastrointestinal lymph nodes. Nasal nanovaccines are easy to use, safe, multifunctional, and can be distributed quickly, demonstrating strong prospects as a vaccination method for SARS-CoV-2, SARS-CoV-2 variants, or SARS-CoV-n.
Collapse
Affiliation(s)
- Jialu Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Yubo Ding
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
| | - Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
| | - Minghui Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Yu Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Zhuoyi Xie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Jianhong Zuo
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
- The Third Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang 421900, China
- Correspondence: ; Tel.: +86-7345-675219
| |
Collapse
|
31
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
32
|
Abourehab MA, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an emerging platform for drug delivery: a state-of-the-art review. J Mater Chem B 2022; 10:2781-2819. [DOI: 10.1039/d2tb00031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-based drug delivery nanoparticles, including non-lamellar type, mesophasic nanostructured materials of lyotropic liquid crystals (LLCs), have been a topic of interest for researchers for their applications in encapsulation of drugs...
Collapse
|
33
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
34
|
Yuan C, Long X, Li J, Cai Q. Coaxially electrospun 5-fluorouracil-loaded PLGA/PVP fibrous membrane for skin tumor treatment. Biomed Mater 2021; 16. [PMID: 34544064 DOI: 10.1088/1748-605x/ac2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
As a biocompatible and biodegradable polymer, poly(lactide-co-glycolide) (PLGA) has been widely used as a carrier to achieve controlled drug delivery in various forms. Focusing on skin tumor treatment, herein 5-fluorouracil (5-FU) was embedded into the core of coaxially electrospun PLGA fibers to get a drug-loaded core-shell fibrous membrane. In the coaxial electrospinning, poly(vinylpyrrolidone) was applied in the inner flow to facilitate the formation of the core-shell structured fibers. The morphology and micro-structure of the fibers were characterized by scanning electron microscope and transmission electron microscope. The influences of the molecular weights and chemical compositions of PLGA copolymers on the release behaviors were studied. The cytotoxicity of the fibers was characterized by cell proliferation and living-dead cell staining experiments. The results showed that faster release rates would be obtained if the copolymers were of lower molecular weights and higher fraction of glycidyl unit. All the prepared 5-FU loaded fibrous membranes were non-cytotoxic, suggesting their potential applications in skin tumor treatment.
Collapse
Affiliation(s)
- Caini Yuan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xinyun Long
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinghua Li
- Department of Oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
35
|
Pooresmaeil M, Asl EA, Namazi H. Simple fabrication of biocompatible chitosan/graphene oxide microspheres for pH-controlled amoxicillin delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021; 294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.
Collapse
|
37
|
Elkady OA, Saleh LM, Tadros MI, El-laithy HM. Nebulization of Risedronate Sodium Microspheres for Potential Attenuation of Pulmonary Emphysema: a Promising New Insight of Alveolar Macrophage Apoptosis. AAPS PharmSciTech 2021; 22:202. [PMID: 34235597 DOI: 10.1208/s12249-021-02078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Risedronate sodium (RS) is a potent nitrogen-containing bisphosphonate which is known to induce osteoclast apoptosis. As a drug repurposing approach, the current work explored the potential of nebulizable RS-chitosan (CS) microspheres to induce alveolar macrophage apoptosis. RS-CS microspheres were assessed for lung deposition, cytotoxicity, and cellular uptake percentage in Calu-3 cells. The potential of nebulizable microspheres for treating elastase-induced emphysema in rats was investigated, compared to RS marketed oral tablets®, with respect to histopathological, immunohistochemical, and flow cytometric studies. The in vitro lung deposition pattern suggested deep alveolar deposition of RS microspheres, with respect to high FPF% and suitable MMAD (66% and 1.506 μm, respectively, at a flow rate of 28.3 L min-1). No apparent cytotoxicity was observed, with a cell viability > 90%. The inhalation of RS-CS microspheres was suggested to inhibit airspace enlargement and lung rarefaction after elastase instillation and reduce the macrophage accumulation in alveolar parenchyma. Immunohistochemical and cytometric analyses revealed significant low expression levels of CD68 and CD11b surface markers, respectively, with significantly (P < 0.05) lower detected numbers of intact alveolar macrophages following inhalation of RS-CS microspheres. The nebulization of RS-CS microspheres could induce apoptosis in alveolar macrophages and be promisingly adopted for attenuation of pulmonary emphysema.
Collapse
|
38
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
39
|
Zheng J, Lv S, Zhong Y, Jiang X. Injectable hydroxypropyl chitin hydrogels embedded with carboxymethyl chitin microspheres prepared via a solvent-free process for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1564-1583. [PMID: 33957063 DOI: 10.1080/09205063.2021.1926893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microspheres and injectable hydrogels derived from natural biopolymers have been extensively investigated as controlled local drug delivery systems. In this study, we prepared carboxymethyl chitin microspheres (CMCH-Ms) with a diameter of 10-100 μm through physical crosslinking by increasing temperature in an aqueous two-phase system without using organic solvents, surfactants and crosslinking agents. The stable microspheres keeping spherical shape with porous microstructure in different pH environments were embeded in thermosensitive hydroxypropyl chitin (HPCH) hydrogels. The morphology, gelation rate, swelling, rheological and mechanical properties, in vitro degradation and cytotoxicity, drug loading and drug release of the CMCH-Ms/HPCH gel scaffolds were examined. In vitro degradation and cytotoxicity test indicated that CMCH-Ms/HPCH gel scaffolds were biodegradable and non-cytotoxic. Moreover, no organic solvent was used in the preparation and drug loading process of CMCH-Ms/HPCH gel scaffold. Importantly, less burst drug release and long-term sustained-release from the CMCH-Ms/HPCH composite hydrogel was observed than those from only CMCH-Ms or HPCH hydrogel. Thus, the composite CMCH-Ms/HPCH hydrogel exhibited great potential application for loading different drugs and sustained drug release in controlled local drug delivery systems.
Collapse
Affiliation(s)
- Jieyu Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
40
|
Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13040587. [PMID: 33924046 PMCID: PMC8073149 DOI: 10.3390/pharmaceutics13040587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized.
Collapse
|