1
|
Forghani S, Almasi H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem 2024; 457:140072. [PMID: 38905838 DOI: 10.1016/j.foodchem.2024.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The aim of research was to fabricate a novel indicator by using κ-carrageenan and quince seed mucilage (QSM) hydrogels and red cabbage anthocyanin. The porosity of the hydrogel was controlled using different ratios of κ-carrageenan(C):QSM(Q) (C90:Q10, C70:Q30, and C50:Q50). The hardness of hydrogels decreased from 28.6 ± 0.3 N for C90Q10 to 11.0 ± 1.0 N for C50Q50 sample. However, according to field emission scanning electron microscopy (FE-SEM) analysis, the C50R50 sample had the best morphology with smooth surface and uniform interconnected porous network. Hydrogen bonding interactions among anthocyanins, QSM, and κ-carrageenan were confirmed by Fourier transforms infrared (FT-IR) spectroscopy. The indicator showed a color variation from red to yellow over the pH range of 2-12. Also, the indicator exhibited high sensitivity to ammonia vapors (SRGB = 115%) and good color stability. The C50QRA indicator was used for monitoring rainbow trout fillet spoilage and revealed a visually-detectable color change from red to green upon detecting total volatile basic nitrogen (TVB-N) content produced throughout storage at 4 °C. Generally, the halochromic hydrogel developed in this research can be suggested as a more sensitive and accurate freshness indicator than conventional indicator solid supports.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
2
|
Chelu M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024; 10:636. [PMID: 39451288 PMCID: PMC11508064 DOI: 10.3390/gels10100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The innovative fusion of essential oils with hydrogel engineering offers an optimistic perspective for the design and development of next-generation materials incorporating natural bioactive compounds. This review provides a comprehensive overview of the latest advances in the use of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking techniques, and functional properties of hydrogels are discussed. The unique characteristics of polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility, nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific characteristics and distinctive properties of essential oils are explored, along with their extraction and encapsulation methods. The advantages and disadvantages of these methods are also discussed. We have considered limitations due to volatility, solubility, environmental factors, and stability. The importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed. This review highlights through an in-depth analysis, the recent innovations, challenges, and future prospects of hydrogels encapsulated with essential oils and their potential for multiple applications including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Cui Y, Zhang R, Cheng M, Li M, Wang X. Development and application of mathematical modeling of thymol release from environmental-responsive potato starch active packaging films. Int J Biol Macromol 2024; 271:132353. [PMID: 38763250 DOI: 10.1016/j.ijbiomac.2024.132353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Traditional active packaging materials are easily affected by the environment, resulting in their inability to release active substances in specified quantities at specified times and locations. In this study, MCM-41 was used as a thymol (THY) carrier and added to the potato starch (PS) matrix to design an intelligent release active packaging film based on storage microenvironment. MCM-41 encapsulation improved thermal stability of THY. THY-MCM-41 addition significantly improved the tensile strength (TS, 7.18 MPa) of the film (P < 0.05) and endowed the film excellent gas and water barrier protection. THY release was responsive to temperature and relative humidity (RH), and the First-order model better explained the THY release pattern (R2 > 0.980). The THY-MCM-41/PS film exhibited long-term antibacterial effect during 10-day storage due to the sustained release of THY. Additionally, strawberries packaged in the THY-MCM-41/PS film exhibited the best sensory characteristics during 5-day storage (25 °C and 50 % RH). Overall, the present THY-MCM-41/PS film provides a novel alternative for the sustained release of active substances in order to achieve the excellent preservation of goods such as fruits and vegetables.
Collapse
Affiliation(s)
- Yingjun Cui
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Mengge Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
4
|
Gao C, Zheng Y, Zhou R, Ma M. Active whey protein/hydroxypropyl methylcellulose edible films incorporated with cinnamaldehyde: Characterization, release kinetics and application to Mongolian cheese preservation. Int J Biol Macromol 2024; 266:131061. [PMID: 38521296 DOI: 10.1016/j.ijbiomac.2024.131061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Edible films with modulated release of antimicrobial agents are important for food preservation. Herein, antimicrobial edible films were prepared using whey protein (WP) and hydroxypropyl methylcellulose (HM) as polymer matrix materials and cinnamaldehyde (CIN) as antimicrobial agent. The mass ratios of WP and HM were 100/0, 75/25, 50/50, 25/75 and 0/100. The release kinetics of CIN through the film was studied, applying the Fickian model, power law and Weibull model. The films were also characterized by physical and structural characteristics, and antibacterial activity. In comparison to other films, the CIN-loaded film with a WP/HM ratio of 50/50 had better moisture resistance, water vapor barrier properties and mechanical properties. High correlation factors were obtained by fitting the CIN release data with the power law (R2 > 0.96) and Weibull model (R2 > 0.97). The diffusion mechanism of CIN was pseudo-Fickian. The diffusion coefficients (D1 and D2) had a positive linear relationship with the HM ratio, suggesting that a high HM ratio was beneficial to the CIN release. Finally, the WH50-C film was successfully used to preserve Mongolian cheese. This research provides a new perspective on the design of active packaging film with sustained-release characteristics.
Collapse
Affiliation(s)
- Chuanrong Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Ran Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China.
| | - Ming Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Fahimnia F, Nemattalab M, Hesari Z. Development and characterization of a topical gel, containing lavender (Lavandula angustifolia) oil loaded solid lipid nanoparticles. BMC Complement Med Ther 2024; 24:155. [PMID: 38589838 PMCID: PMC11000301 DOI: 10.1186/s12906-024-04440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.
Collapse
Affiliation(s)
- Faeze Fahimnia
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Santamaría E, Maestro A, González C. Use of Double Gelled Microspheres to Improve Release Control of Cinnamon-Loaded Nanoemulsions. Molecules 2023; 29:158. [PMID: 38202745 PMCID: PMC10780570 DOI: 10.3390/molecules29010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The use of nanoemulsions as encapsulation systems for active ingredients, such as cinnamon oil, has been studied. A surfactant based on polyoxyethylene glycerol esters from coconut/palm kernel oil has been used. The nanoemulsions were obtained by the two most commonly low-energy emulsification methods, the composition inversion phase (PIC) and the temperature inversion phase (PIT) methods. Nanoemulsions were successfully obtained by both methods, with very small droplet sizes (5-14 nm) in both cases, but a greater stability was observed when the PIT method was used. Nanoemulsions were encapsulated by external gelation using two different polysaccharides, alginate or chitosan, dissolved in the continuous phase of the nanoemulsion. Then, the nanoemulsion was dropped into a bath with a gelling agent. To improve the release control of cinnamon oil and avoid the burst effect, beads prepared with one of the polysaccharides were coated with the second polysaccharide and then gelled again. Double gelled beads were successfully obtained, the core with chitosan and the outer layer (shell) with alginate. SEM images showed the morphology of the single beads presenting high porosity. When the beads were coated, the porosity decreased because the second polysaccharide molecules covered the pre-existing pores. The smoother surface was obtained when this second layer was, in turn, gelled. The release patterns at pH = 2 and pH = 7 were studied. It was observed that the double gelled bead provided a more gradual release, but maintained approximately the same amount of final released oil. The release patterns were fitted to the Korsmeyer-Peppas model. The fitting parameters reflected the effect of the different coating layers, correlating with different diffusion mechanisms according to the bead core and shell materials.
Collapse
Affiliation(s)
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain; (E.S.); (C.G.)
| | | |
Collapse
|
7
|
Hou T, Ma S, Wang F, Wang L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci Biotechnol 2023; 32:1459-1478. [PMID: 37637837 PMCID: PMC10449740 DOI: 10.1007/s10068-023-01344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 08/29/2023] Open
Abstract
Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
8
|
Yin L, Zhang K, Sun W, Zhang Y, Wang Y, Qin J. Carboxymethylcellulose based self-healing hydrogel with coupled DOX as Camptothecin loading carrier for synergetic colon cancer treatment. Int J Biol Macromol 2023; 249:126012. [PMID: 37517758 DOI: 10.1016/j.ijbiomac.2023.126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The self-healing hydrogels have important applications in biomedication as drug release carrier. In this research, the Doxorubicin (DOX) was coupled onto oxidized carboxymethylcellulose (CMC) (CMC-Ald) to fabricate self-healing hydrogel with intrinsic antitumor property and loaded with Camptothecin (CPT) for synergetic antitumor treatment. The DOX coupled CMC-Ald (CMC-AD) was reacted with poly(aspartic hydrazide) (PAH) to fabricate injectable self-healing hydrogel. The coupled DOX avoided the burst release of the drug and the 100 % CPT loaded hydrogel could take the advantages of both drugs to enhance the synergetic antitumor therapeutic effect. The in vitro and in vivo results revealed the CPT loaded CMC-AD/PAH hydrogel showed enhanced antitumor property and reduced biotoxicity of the drugs. These properties demonstrate that the CMC-AD/PAH hydrogel has great application prospects in biomedication.
Collapse
Affiliation(s)
- Liping Yin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Kaiyue Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Weichen Sun
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
9
|
Krebs J, Stealey S, Brown A, Krohn A, Zustiak SP, Case N. Carrageenan-Based Crowding and Confinement Combination Approach to Increase Collagen Deposition for In Vitro Tissue Development. Gels 2023; 9:705. [PMID: 37754385 PMCID: PMC10529090 DOI: 10.3390/gels9090705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Connective tissue models grown from cell monolayers can be instrumental in a variety of biomedical fields such as drug screening, wound healing, and regenerative engineering. However, while connective tissues contain abundant fibrillar collagen, achieving a sufficient assembly and retention of fibrillar collagen in vitro is challenging. Unlike the dilute cell culture environment, the body's environment is characterized by a high density of soluble macromolecules (crowding) and macromolecular networks (confinement), which contribute to extracellular matrix (ECM) assembly in vivo. Consequently, macromolecular crowding (MMC) has been successfully used to enhance the processing of type I procollagen, leading to significant increases in fibrillar collagen assembly and accumulation during in vitro culture of a variety of cell types. In this study, we developed a combination approach using a carrageenan hydrogel, which released soluble macromolecules and served as a confinement barrier. We first evaluated the local carrageenan release and then confirmed the effectiveness of this combination approach on collagen accumulation by the human MG-63 bone cell line. Additionally, computational modeling of oxygen and glucose transport within the culture system showed no negative effects of the hydrogel and its releasates on cell viability.
Collapse
Affiliation(s)
- Joseph Krebs
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA (S.P.Z.)
| | - Samuel Stealey
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA (S.P.Z.)
| | - Alyssa Brown
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA (S.P.Z.)
| | - Austin Krohn
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA (S.P.Z.)
| | - Silviya Petrova Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA (S.P.Z.)
- Department of Physiology and Pharmacology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Natasha Case
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA (S.P.Z.)
| |
Collapse
|
10
|
Zhang W, Ezati P, Khan A, Assadpour E, Rhim JW, Jafari SM. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv Colloid Interface Sci 2023; 318:102965. [PMID: 37480830 DOI: 10.1016/j.cis.2023.102965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Parya Ezati
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
11
|
Liu Y, Weng L, Lin Y, Lin D, Xie L, Zhong T. Carvacrol/β-cyclodextrin inclusion complex as a fumigant to control decay caused by Penicillium digitatum on Shatangju mandarin slices. Heliyon 2023; 9:e18804. [PMID: 37576255 PMCID: PMC10415668 DOI: 10.1016/j.heliyon.2023.e18804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Preservation and microorganism control of fresh-cut fruit pose a persistent challenge in the food industry. To address this issue, we prepared a β-cyclodextrin (β-CD) inclusion complex containing carvacrol using a coprecipitation method and employed it for the non-contact fumigation of fresh-cut Shatangju mandarin slices. This biodegradable and safe preservative offers an effective means to combat spoilage and ensure product quality. We confirmed the formation of the encapsulated structure of the inclusion complex through various characterization methods, including scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). We also demonstrated the inhibitory effect of this preservative on Penicillium digitatum and its associated spoilage both in vitro and in vivo. The incidence and severity were significant lower in the inclusion complex-treated group (75.0% and 46.7%, respectively) compared to the group treated with pure carvacrol (100% and 69.2%, respectively). In addition, fruit freshness parameters and sensory evaluation showed that the inclusion complex treatment effectively maintained the overall quality of the fruit and achieved the highest consumer acceptance.
Collapse
Affiliation(s)
- Yumeng Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Luo Weng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Lin
- Agricultural and Rural Bureau of Pingyuan County, Meizhou 514600, China
| | - Daijie Lin
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Linsheng Xie
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
12
|
Li Q, Wang X, Wang X, Zheng L, Chen P, Zhang B. Novel insights into versatile nanomaterials integrated bioreceptors toward zearalenone ultrasensitive discrimination. Food Chem 2023; 410:135435. [PMID: 36641913 DOI: 10.1016/j.foodchem.2023.135435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Detrimental contamination of zearalenone (ZEN) in crops and foodstuffs has drawn intensive public attention since it poses an ongoing threat to global food security and human health. Highly sensitive and rapid response ZEN trace analysis suitable for complex matrices at different processing stages is an indispensable part of food production. Conventional detection methods for ZEN encounter many deficiencies and demerits such as sophisticated equipment and heavy labor intensity. Alternatively, the nanomaterial-based biosensors featured with high sensitivity, portability, and miniaturization are springing up and emerging as superb substitutes to monitor ZEN in recent years. Herein, we predominantly devoted to overview the progress in the fabrication strategies and applications of various nanomaterial-based biosensors, highlighting rationales on sensing mechanisms, response types, and practical analytical performance. Synchronously, the versatile nanomaterials integrating with diverse recognition elements for augmenting sensing capabilities are emphasized. Finally, critical challenges and perspectives to expedite ZEN detection are outlooked.
Collapse
Affiliation(s)
- Quanliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaomeng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lin Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
13
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
14
|
Minozzo M, de Souza MA, Bernardi JL, Puton BMS, Valduga E, Steffens C, Paroul N, Cansian RL. Antifungal activity and aroma persistence of free and encapsulated Cinnamomum cassia essential oil in maize. Int J Food Microbiol 2023; 394:110178. [PMID: 36947915 DOI: 10.1016/j.ijfoodmicro.2023.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
The objective of this study was to evaluate the chemical composition and antifungal activity of free and encapsulated Cinnamomum cassia essential oil (EO) against Penicillium crustosum, Alternaria alternata, and Aspergillus flavus, and the aroma persistence in maize flour. Trans-cinnamaldehyde (TC) was identified as the major compound (86 %) in the C. cassia EO. The EO was encapsulated by spray-dryer with 45.26 % efficiency using gum arabic (GA) and maltodextrin (MD) in a ratio of 1:1 (m/m). C. cassia EO showed antifungal activity against A. alternata, A. flavus, and P. crustosum, with a minimum inhibitory concentration (MIC) of 0.5 % for both free and standard TC, and 5 % for the encapsulated EO. Fungal growth inhibition was evaluated under exposition to vapors at different concentrations of C. cassia EO and TC standard, with MIC of 6 % and 8 % against P. crustosum, 4 % and 1 % A. alternata, and 4 % A. flavus, respectively. The sensory analysis results of the free and encapsulated C. cassia EO in maize flour showed a significant difference between the treated samples in relation to the standard sample (p < 0.05). The sample with free EO has high aroma intensity persistence, while the samples treated with encapsulated EO were evaluated as being closer to the standard sample. The results suggest that the encapsulated C. cassia EOs can be used as natural alternatives to control fungi in maize flour.
Collapse
Affiliation(s)
- Mariane Minozzo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Marina Andreia de Souza
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Julia Lisboa Bernardi
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Bruna Maria Saorin Puton
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil.
| | - Eunice Valduga
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Natalia Paroul
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| | - Rogério Luis Cansian
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, 99709-910 Erechim, RS, Brazil
| |
Collapse
|
15
|
Cheng J, Wang H. Construction and application of nano ZnO/eugenol@yam starch/microcrystalline cellulose active antibacterial film. Int J Biol Macromol 2023; 239:124215. [PMID: 36996962 DOI: 10.1016/j.ijbiomac.2023.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The goal of this study was to develop new biocomposite films that can better protect and prolong the shelf life of food. Here, a ZnO: eugenol@yam starch/microcrystalline cellulose (ZnO:Eu@SC) antibacterial active film was constructed. Because of the advantages of metal oxides and plant essential oils, codoping with these can effectively improve the physicochemical and functional properties of composite films. The addition of an appropriate amount of nano-ZnO improved the compactness and thermostability, reduced the moisture sensitivity, and enhanced the mechanical and barrier properties of the film. ZnO:Eu@SC exhibited good controlled release of nano-ZnO and Eu in food simulants. Nano-ZnO and Eu release was controlled by two mechanisms: diffusion (primary) and swelling (secondary). After loading Eu, the antimicrobial activity of ZnO:Eu@SC was significantly enhanced, resulting in a synergistic antibacterial effect. Z4:Eu@SC film extended the pork shelf life by 100 % (25 °C). In humus, the ZnO:Eu@SC film was effectively degraded into fragments. Therefore, the ZnO:Eu@SC film has excellent potential in food active packaging.
Collapse
Affiliation(s)
- Junfeng Cheng
- School of Food and Health, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| |
Collapse
|
16
|
Zhou J, Guo M, Wu D, Shen M, Liu D, Ding T. Synthesis of UiO-66 loaded-caffeic acid and study of its antibacterial mechanism. Food Chem 2023; 402:134248. [DOI: 10.1016/j.foodchem.2022.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
17
|
Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022; 64:2695-2707. [PMID: 36129051 DOI: 10.1080/10408398.2022.2124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Baked food is one of the most important staple foods in people's life, but its shelf life is limited. In addition, the spoilage of baked food caused by microbial deterioration will not only cause huge economic losses, but also pose a serious threat to human health. At present, due to the improvement of consumers' health awareness, the use of chemical preservatives has been gradually restricted. Compared with other types of synthetic preservatives, essential oils are becoming more and more popular because they are in line with the current development trend of "green," "safety" and "health" of food additives. Therefore, in this paper, we first summarized the main factors affecting the fungal contamination of baked food. Then analyzed the antifungal activity and mechanism of essential oil. Finally, we comprehensively summarized the application strategy of essential oil in the preservation of baked food. This review is of great significance for fully understanding the antifungal mechanism of essential oils and promoting the application of essential oils in the preservation of baked food.
Collapse
Affiliation(s)
- Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Qianyu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jinglin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jian Ju
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| |
Collapse
|
18
|
Tavares L, Zapata Noreña CP, Barros HL, Smaoui S, Lima PS, Marques de Oliveira M. Rheological and structural trends on encapsulation of bioactive compounds of essential oils: A global systematic review of recent research. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zhao Y, Yan M, Xue S, Zhang T, Shen X. Influence of ultrasound and enzymatic cross-linking on freeze-thaw stability and release properties of whey protein isolate hydrogel. J Dairy Sci 2022; 105:7253-7265. [PMID: 35863927 DOI: 10.3168/jds.2021-21605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
This study investigated the effect of ultrasound and enzymatic cross-linking on the freeze-thaw (FT) stability and release properties of whey protein isolate hydrogels. We evaluated the FT stability by the changes in the microstructure, riboflavin retention, syneresis, water holding capacity (WHC), and texture of gels subjected to 3 FT cycles. High-intensity ultrasound (HUS) and transglutaminase (TGase)-mediated cross-linking improved the FT stability of whey protein isolate hydrogels loaded with riboflavin (WPISAR), as demonstrated by a more uniform and denser porous structure, significantly higher riboflavin retention, WHC, and textural properties, and lower syneresis after 3 FT cycles than those of untreated hydrogels. Furthermore, HUS- and TGase-mediated cross-linking decreased protein erosion and swelling ratio of WPISAR in simulated gastrointestinal fluids (SGIF) and reduced the riboflavin release rate in SGIF both with and without the addition of digestive enzymes. After 3 FT cycles, faster riboflavin release occurred due to a more porous structure induced by ice crystal formation compared with their unfrozen counterparts as detected by confocal laser scanning microscopy. High-intensity ultrasound- and TGase-mediated cross-linking alleviated the FT-induced faster riboflavin release rate in SGIF. High-intensity ultrasound- and TGase-treated gel samples showed that both diffusion and network erosion were responsible for riboflavin release regardless of FT. These results suggest that HUS- and TGase-mediated cross-linking improved the FT stability of WPISAR with a high riboflavin retention, and might be a good candidate as a controlled-release vehicle for riboflavin delivery to overcome undesired FT processing.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Mi Yan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
20
|
Wang Y, Bai Y, Dong J, Ji H, Liu J, Jin Z. Partial hydrolysis of waxy rice starch by maltogenic α‐amylase to regulate its structures, rheological properties and digestibility. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Jialin Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 Jiangsu Province China
| |
Collapse
|
21
|
Pickering emulsions stabilized by β-cyclodextrin and cinnamaldehyde essential oil/β-cyclodextrin composite: A comparison study. Food Chem 2022; 377:131995. [PMID: 34990944 DOI: 10.1016/j.foodchem.2021.131995] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Here, a cinnamaldehyde essential oil (CEO)/β-Cyclodextrin (β-CD) composite with a high embedding rate (91.74 ± 0.82%) was prepared. Its structure was characterized by Fourier transform infrared spectrometer (FT-IR) and X-ray diffractometer (XRD). Pickering emulsions prepared by β-CD and CEO/β-CD at different concentrations (1-5%) were comparatively investigated. The CEO/β-CD emulsions had better storage stability. Rheological results confirmed the emulsions were all gel-like elastic emulsions and had shear thinning phenomenon. Fluorescence microscopy and scanning electron microscopy (SEM) results confirmed that the most of excessive β-CD was adsorbed on the surface of emulsion droplets as crystals, formed thick protective shell in β-CD emulsions, while the most of excessive composites were distributed in the aqueous phase forming a stable network structure in CEO/β-CD emulsions. It caused these two emulsions had different rheological properties, and different changing trends in droplet size.
Collapse
|
22
|
Marković MD, Tadić JD, Savić SI, Matić IZ, Stanojković TP, Mijin DŽ, Panić VV. Soft 3D hybrid network for delivery and controlled release of poorly soluble dihydropyrimidinone compound: An insight into the novel system for potential application in leukemia treatment. J Biomed Mater Res A 2022; 110:1564-1578. [PMID: 35488447 DOI: 10.1002/jbm.a.37396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022]
Abstract
Researchers are faced with everyday demands for safer and more efficient therapy for many diseases, especially serious one such as various types of cancer. Numerous anticancer drugs are poorly-water soluble and therefore their encapsulation and controlled release remain quite challenge. In present study, we deepened our research of hydrophilic carrier based on poly(methacrylic acid) and casein (PMAC) by investigating its potential for encapsulation and controlled release of novel poorly water-soluble dihydropyrimidion-azo-pyridon compound (DHPMP). DHPMP is a dye that has been proven to show cytotoxic activity against chronic myeloid leukemia K562 cells. By encapsulating DHPMP into the carrier and delivering it into the intestines, DHPMP absorption could be the fastest and the number of therapeutic doses and side effects can be reduced. Carriers based on PMAC and DHPMP (PMAC-DHPMP) were synthetized and characterized by FTIR, SEM and single compression tests. The swelling behavior of PMAC-DHPMP carriers and cumulative DHPMP release were investigated depending on the amount of crosslinker and encapsulated DHPMP in two media which were simulating pH environments in human stomach and intestines. The prolonged and controlled release of DHPMP was achieved. In vitro cytotoxic activity of PMAC-DHPMP carriers against K562 cells and the cell cycle analysis showed great potential of the carriers for application in leukemia treatment.
Collapse
Affiliation(s)
- Maja D Marković
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Julijana D Tadić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja I Savić
- Institute of Chemistry, Technology and Metallurgy, Center of Excellence in Environmental Chemistry and Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Dušan Ž Mijin
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panić
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Ahmed J, Mulla MZ, Al-Attar H, Jacob H. Comparison of thermo-rheological, microstructural and antimicrobial properties of β- and γ-cyclodextrin inclusion complexes of cinnamon essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Wang Y, Bai Y, Ji H, Dong J, Li X, Liu J, Jin Z. Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lin Y, Huang R, Sun X, Yu X, Xiao Y, Wang L, Hu W, Zhong T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Mathematical modeling of cinnamon (Cinnamomum verum) bark oil release from agar/PVA biocomposite film for antimicrobial food packaging: The effects of temperature and relative humidity. Food Chem 2021; 363:130306. [PMID: 34134074 DOI: 10.1016/j.foodchem.2021.130306] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Antimicrobial biocomposite films were prepared using agar (AG) and polyvinyl alcohol (PVA) as polymer matrix materials and cinnamon bark oil (CBO) as antimicrobial agent. AG and PVA were blended with different mixing ratios. The addition of AG improved the overall water resistance properties of the composite films. To evaluate the effects of temperature and relative humidity (RH) on the release kinetics of CBO from films, CBO release kinetics were analyzed under the 9 combinations of temperature and RH. Then, mathematical modeling of obtained data was conducted using Peleg, Ritger-Peppas, and Peppas-Sahlin models to investigate the release mechanisms of CBO. Consequently, the CBO release rate proportionally increased with the temperature and RH, with the RH being the main factor affecting the release behavior of CBO. In vitro antimicrobial activity tests against gram-positive and gram-negative bacteria showed that the developed composite films have high applicability as an antimicrobial food packaging material.
Collapse
|