1
|
Schlicke J, Cramer C, Schönhoff M. Time-pH and time-humidity scaling of ionic conductivity spectra of polyelectrolyte multilayers. Phys Chem Chem Phys 2024; 26:26799-26807. [PMID: 39403822 DOI: 10.1039/d4cp03482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In this systematic study, ionic conductivity spectra of poly(diallyl-dimethylammonium)/poly(acrylic acid) (PDADMA/PAA)n polyelectrolyte multilayers (PEMs) are investigated regarding superposition principles. In this context, charge transport as well as charge compensation processes in polyelectrolyte assemblies are discussed. The validity of different scaling concepts is tested to differentiate between changes in the mobility and charge carrier density, caused by the variation of a parameter X, where X is either relative humidity during measurement, or salt concentration or pH during preparation. For the first time, time-X scaling for conductivity spectra of PEMs is reported for all three parameters X, resulting in individual mastercurves. Furthermore, a super-mastercurve can be obtained including variations of all three parameters. Changes in plasticization caused by either varied humidity, pH or ionic strength imply non-constant charge carrier mobilities in accordance with a Summerfield-type of scaling, while the charge carrier density remains constant. Interestingly, for preparation conditions which favor extrinsic charge compensation, significant deviations from such Summerfield-type scaling are observed, indicating a variation of the number density of mobile charge carriers with humidity.
Collapse
Affiliation(s)
- Jannis Schlicke
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
- Center for Soft Nanoscience, Busso-Peuss-Str. 10, 48149 Münster, Germany
| | - Cornelia Cramer
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
- Center for Soft Nanoscience, Busso-Peuss-Str. 10, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
- Center for Soft Nanoscience, Busso-Peuss-Str. 10, 48149 Münster, Germany
| |
Collapse
|
2
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Solomevich SO, Aharodnikau UE, Dmitruk EI, Nikishau PA, Bychkovsky PM, Salamevich DA, Jiang G, Pavlov KI, Sun Y, Yurkshtovich TL. Chitosan - dextran phosphate carbamate hydrogels for locally controlled co-delivery of doxorubicin and indomethacin: From computation study to in vivo pharmacokinetics. Int J Biol Macromol 2023; 228:273-285. [PMID: 36581023 DOI: 10.1016/j.ijbiomac.2022.12.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The development of synergistic drug combinations is a promising strategy for effective cancer suppression. Here, we report all-polysaccharide biodegradable polyelectrolyte complex hydrogels (DPCS) based on dextran phosphate carbamate (DP) and chitosan (CS) for controlled co-delivery of the anticancer drug doxorubicin (DOX) and the non-steroidal anti-inflammatory drug indomethacin (IND). IND can induce more apoptosis in tumor cells by reducing the level of multidrug resistance-associated protein 1. Based on calculations using density functional theory and zeta potential analysis data, carriers with high drug loading were obtained. The release profile of both drugs from the hydrogels was tuned by changing the molecular weight and functional groups content of the polysaccharides. The optimized DPCS showed a steady release of DOX both in vitro and in vivo, and a gradual release of IND, which constantly induced the action of DOX. Considering all of these benefits, DOX- and IND-loaded DPCS offer a promising long-acting polysaccharide-based antitumor platform.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus.
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Educational-Scientific-Production Republican Unitary Enterprise "UNITEHPROM BSU", Minsk 220045, Belarus
| | - Egor I Dmitruk
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Educational-Scientific-Production Republican Unitary Enterprise "UNITEHPROM BSU", Minsk 220045, Belarus
| | - Pavel A Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Department of Chemistry, Belarusian State University, Minsk 220006, Belarus
| | - Pavel M Bychkovsky
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus; Educational-Scientific-Production Republican Unitary Enterprise "UNITEHPROM BSU", Minsk 220045, Belarus
| | | | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | | | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Tatiana L Yurkshtovich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| |
Collapse
|
4
|
Heydari Foroushani P, Rahmani E, Alemzadeh I, Vossoughi M, Pourmadadi M, Rahdar A, Díez-Pascual AM. Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3426. [PMID: 36234554 PMCID: PMC9565735 DOI: 10.3390/nano12193426] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 05/15/2023]
Abstract
Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using the electrospinning method, which facilitates the pH-responsive release of CUR, accelerates wound healing, and improves mechanical properties. Response surface methodology (RSM) was used to investigate the effect of the solution parameters on the nanofiber diameter and morphology. The nanofibers were characterized via Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), zeta potential, and Dynamic Light Scattering (DLS). CS concentration plays a crucial role in the physical and mechanical properties of the nanofibers. Drug loading and entrapment efficiencies improved from 13 to 44% and 43 to 82%, respectively, after the incorporation of Ag nanoparticles. The application of CS hydrogel enabled a pH-responsive release of CUR under acid conditions. The Minimum Inhibitory Concentration (MIC) assay on E. coli and S. aureus bacteria showed that nanofibers with lower CS concentration cause stronger inhibitory effects on bacterial growth. The nanofibers do not have any toxic effect on cell culture, as revealed by in vitro wound healing test on NIH 3T3 fibroblasts.
Collapse
Affiliation(s)
- Parisa Heydari Foroushani
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Erfan Rahmani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Iran Alemzadeh
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Manouchehr Vossoughi
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Grzeczkowicz A, Lipko A, Kwiatkowska A, Strawski M, Bącal P, Więckowska A, Granicka LH. Polyelectrolyte Membrane Nanocoatings Aimed at Personal Protective and Medical Equipment Surfaces to Reduce Coronavirus Spreading. MEMBRANES 2022; 12:membranes12100946. [PMID: 36295705 PMCID: PMC9611533 DOI: 10.3390/membranes12100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 05/31/2023]
Abstract
The study of the surface of membrane coatings constructed with adsorbed coronavirus (COV) was described to test their suitability for the antiviral activity for application in personal protective and medical equipment. The nanocoating based on polyethyleneimine (PEI) or polystyrene sulfonate (PSS) with metallic nanoparticles incorporated was investigated using the AFM technique. Moreover, the functioning of human lung cells in a configuration with the prepared material with the adsorbed coronavirus was studied using microscopic techniques and flow cytometry. The mean values of the percentage share of viable cells compared with the control differed by a maximum of 22%. The results showed that PEI and PSS membrane layer coatings, modified with chosen metallic nanoparticles (AuNPs, AgNPs, CuNPs, FeNPs) that absorb COV, could support lung cells' function, despite the different distribution patterns of COV on designed surfaces as well as immobilized lung cells. Therefore, the developed membrane nanocoatings can be recommended as material for biomedical applications, e.g., medical equipment surfaces to reduce coronavirus spreading, as they adsorb COV and simultaneously maintain the functioning of the eukaryotic cells.
Collapse
Affiliation(s)
- Anna Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 st., 02-109 Warsaw, Poland
| | - Agata Lipko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 st., 02-109 Warsaw, Poland
| | - Angelika Kwiatkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 st., 02-109 Warsaw, Poland
| | - Marcin Strawski
- Laboratory of Electrochemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1 st., 02-093 Warsaw, Poland
| | - Paweł Bącal
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55 st., 00-818 Warsaw, Poland
| | - Agnieszka Więckowska
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1 st., 02-093 Warsaw, Poland
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 st., 02-109 Warsaw, Poland
| |
Collapse
|
6
|
Recent Progress on Modified Gum Katira Polysaccharides and Their Various Potential Applications. Polymers (Basel) 2022; 14:polym14173648. [PMID: 36080723 PMCID: PMC9460252 DOI: 10.3390/polym14173648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Gum katira polysaccharide is biocompatible and non-toxic, and has antioxidant, anti-microbial, and immunomodulatory properties. It is a natural polysaccharide and exudate derived from the stem bark of Cochlospermum reliogosum Linn. Additionally, it has many traditional medicinal uses as a sedative and for the treatment of jaundice, gonorrhea, syphilis, and stomach ailments. This article provides an overview of gum katira, including its extraction, separation, purification, and physiochemical properties and details of its characterization and pharmacognostic features. This paper takes an in-depth look at the synthetic methods used to modify gum katira, such as carboxymethylation and grafting triggered by free radicals. Furthermore, this review provides an overview of its industrial and phytopharmacological applications for drug delivery and heavy metal and dye removal, its biological activities, its use in food, and the potential use of gum katira derivatives and their industrial applications. We believe researchers will find this paper useful for developing techniques to modify gum katira polysaccharides to meet future demands.
Collapse
|
7
|
Zhang R, Han Y, Xie W, Liu F, Chen S. Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6354-6367. [PMID: 35603429 DOI: 10.1021/acs.jafc.2c01936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many proteins can be used to fabricate nanocarriers for encapsulation, protection, and controlled release of nutraceuticals. This review examined the protein-based nanocarriers from microscopic molecular characteristics to the macroscopical structural and functional attributes. Structural, physical, and chemical properties of protein-based nanocarriers were introduced in detail. The spatial size, shape, water dispersibility, colloidal stability, etc. of protein-based nanocarriers were largely determined by the molecular physicochemical principles of protein. Different preparative techniques, including antisolvent precipitation, pH-driven, electrospray, and gelation methods, among others, can be used to fabricate different protein-based nanocarriers. Various modifications based on physical, chemical, and enzymatic approaches can be used to improve the functional performance of these nanocarriers. Protein is a natural resource with a wide range of sources, including plant, animal, and microbial, which are usually used to fabricate the nanocarriers. Protein-based nanocarriers have many advantages in aid of the application of bioactive ingredients to the medical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuai Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
8
|
Yang Y, Sun H, Zhao X, Xian D, Han X, Wang B, Wang S, Zhang M, Zhang C, Ye X, Ni Y, Tong Y, Tang Q, Liu Y. High-Mobility Fungus-Triggered Biodegradable Ultraflexible Organic Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105125. [PMID: 35257518 PMCID: PMC9069197 DOI: 10.1002/advs.202105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Indexed: 05/31/2023]
Abstract
Biodegradable organic field-effect transistors (OFETs) have drawn tremendous attention for potential applications such as green electronic skins, degradable flexible displays, and novel implantable devices. However, it remains a huge challenge to simultaneously achieve high mobility, stable operation and controllable biodegradation of OFETs, because most of the widely used biodegradable insulating materials contain large amounts of hydrophilic groups. Herein, it is firstly proposed fungal-degradation ultraflexible OFETs based on the crosslinked dextran (C-dextran) as dielectric layer. The crosslinking strategy effectively eliminates polar hydrophilic groups and improves water and solvent resistance of dextran dielectric layer. The device with spin-coated 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor and C-dextran dielectric exhibits the highest mobility up to 7.72 cm2 V-1 s-1 , which is higher than all the reported degradable OFETs. Additionally, the device still maintains high performance regardless of in an environment humidity up to 80% or under the extreme bending radius of 0.0125 mm. After completion of their mission, the device can be controllably biodegraded by fungi without any adverse environmental effects, promoting the natural ecological cycles with the concepts of "From nature, for nature". This work opens up a new avenue for realizing high-performance biodegradable OFETs, and advances the process of the "green" electrical devices in practical applications.
Collapse
Affiliation(s)
- Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Hongying Sun
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Da Xian
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xu Han
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| |
Collapse
|
9
|
Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. Int J Biol Macromol 2022; 207:666-682. [PMID: 35218804 DOI: 10.1016/j.ijbiomac.2022.02.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Skin is the largest organ in the body which plays different roles in maintaining hemostasis. Although this tissue has a high healing potential, severe skin wounds cannot heal without external interventions. Among various treatment strategies, tissue-engineered wound dressings have gained significant attention. In this regard, tremendous progress has been made in the field of tissue engineering to develop constructs with higher healing activities. Material selection and optimization are key factors in development of such dressings. Among different candidates, dextran-based wound dressings have been extensively studied. Dextran is a branched biological macromolecule which is composed of anhydroglucose monomers. Due to its excellent biocompatibility, biodegradability, non-toxicity, modifiable functional groups, and proven clinical safety, dextran has found application in wound healing research. In the current review, applications, challenges, and future perspectives of dextran-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Analysis and Testing Center, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.
| | - Saman Jalili
- Department of Biomaterials Science and Technology, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
10
|
Silk Sericin-Polyethyleneimine Hybrid Hydrogel with Excellent Structural Stability for Cr(VI) Removal. Macromol Res 2022. [DOI: 10.1007/s13233-021-9098-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Chitosan/alginate/hyaluronic acid polyelectrolyte composite sponges crosslinked with genipin for wound dressing application. Int J Biol Macromol 2021; 182:512-523. [PMID: 33848546 DOI: 10.1016/j.ijbiomac.2021.04.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Wound dressing composed of polyelectrolyte complexes (PECs), based on chitosan/alginate/hyaluronic acid (CS/ALG/HYA) crosslinked by genipin, was prepared by freeze-dried molding. Genipin as excellent natural biological crosslinker was chose for high biocompatibility and improving mechanical properties of materials. The CS/ALG/HYA sponges (CAHSs) were characterized by FTIR, XRD, DSC and SEM. Porosity, swelling behavior and mechanical properties and in vitro degradation of CAHSs were investigated. The cytotoxicity assay was carried out on HUVEC cells in vitro and the result proves the good biocompatibility of CAHSs. Hemolysis tests indicated that the prepared CAHSs were non-hemolytic material (hemolysis ratio < 5%, no cytotoxicity). PT and aPPT coagulation tests demonstrated that CAHS2 and CAHS3 could both activate the extrinsic and intrinsic coagulation pathway and thus accelerated blood coagulation. Further, in a rat full-thickness wounds model, the CAHS2 sponge significantly facilitates wound closure compared to other groups. CAHSs exhibited adjustable physical, mechanical and biological properties. Thus, the chitosan-based polyelectrolyte composite sponges exhibit great potential as promising wound dressings.
Collapse
|