1
|
Mendes F, Miranda E, Amaral L, Carvalho C, Castro BB, Sousa MJ, Chaves SR. Novel yeast-based biosensor for environmental monitoring of tebuconazole. Appl Microbiol Biotechnol 2024; 108:10. [PMID: 38170307 PMCID: PMC10764535 DOI: 10.1007/s00253-023-12944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
Due to increasing demand for high and stable crop production, human populations are highly dependent on pesticide use for growing and storing food. Environmental monitoring of these agrochemicals is therefore of utmost importance, because of their collateral effects on ecosystem and human health. Even though most current-use analytical methods achieve low detection limits, they require procedures that are too complex and costly for routine monitoring. As such, there has been an increased interest in biosensors as alternative or complementary tools to streamline detection and quantification of environmental contaminants. In this work, we developed a biosensor for environmental monitoring of tebuconazole (TEB), a common agrochemical fungicide. For that purpose, we engineered S. cerevisiae cells with a reporter gene downstream of specific promoters that are expressed after exposure to TEB and characterized the sensitivity and specificity of this model system. After optimization, we found that this easy-to-use biosensor consistently detects TEB at concentrations above 5 μg L-1 and does not respond to realistic environmental concentrations of other tested azoles, suggesting it is specific. We propose the use of this system as a complementary tool in environmental monitoring programs, namely, in high throughput scenarios requiring screening of numerous samples. KEY POINTS: • A yeast-based biosensor was developed for environmental monitoring of tebuconazole. •The biosensor offers a rapid and easy method for tebuconazole detection ≥ 5 μg L-1. •The biosensor is specific to tebuconazole at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Eduarda Miranda
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Carla Carvalho
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
- Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Bruno B Castro
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Maria João Sousa
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
2
|
Vela-Corcia D, Hierrezuelo J, Pérez-Lorente AI, Stincone P, Pakkir Shah AK, Grélard A, Zi-Long Y, de Vicente A, Pérez García A, Bai L, Loquet A, Petras D, Romero D. Cyclo(Pro-Tyr) elicits conserved cellular damage in fungi by targeting the [H +]ATPase Pma1 in plasma membrane domains. Commun Biol 2024; 7:1253. [PMID: 39362977 PMCID: PMC11449911 DOI: 10.1038/s42003-024-06947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Bioactive metabolites play a crucial role in shaping interactions among diverse organisms. In this study, we identified cyclo(Pro-Tyr), a metabolite produced by Bacillus velezensis, as a potent inhibitor of Botrytis cinerea and Caenorhabditis elegans, two potential cohabitant eukaryotic organisms. Based on our investigation, cyclo(Pro-Tyr) disrupts plasma membrane polarization, induces oxidative stress and increases membrane fluidity, which compromises fungal membrane integrity. These cytological and physiological changes induced by cyclo(Pro-Tyr) may be triggered by the destabilization of membrane microdomains containing the [H+]ATPase Pma1. In response to cyclo(Pro-Tyr) stress, fungal cells activate a transcriptomic and metabolomic response, which primarily involves lipid metabolism and Reactive Oxygen Species (ROS) detoxification, to mitigate membrane damage. This similar response occurs in the nematode C. elegans, indicating that cyclo(Pro-Tyr) targets eukaryotic cellular membranes.
Collapse
Affiliation(s)
- D Vela-Corcia
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - J Hierrezuelo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - P Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - A K Pakkir Shah
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
| | - A Grélard
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - Y Zi-Long
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A Pérez García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - L Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A Loquet
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - D Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| | - D Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
3
|
Andrés MT, Fierro P, Antuña V, Fierro JF. The Antimicrobial Activity of Human Defensins at Physiological Non-Permeabilizing Concentrations Is Caused by the Inhibition of the Plasma Membrane H +-ATPases. Int J Mol Sci 2024; 25:7335. [PMID: 39000442 PMCID: PMC11242853 DOI: 10.3390/ijms25137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and β-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.
Collapse
Affiliation(s)
- María T. Andrés
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- SamerLabs SL, Asturias Technology Park, 33428 Llanera, Spain
| | - Patricia Fierro
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Primary Care Emergency Service, Cantabrian Health Service, 39000 Santander, Spain
| | - Victoria Antuña
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
| | - José F. Fierro
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Deparment of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Nobeyama T, Yoshida T, Shiraki K. Interfacial and intrinsic molecular effects on the phase separation/transition of heteroprotein condensates. Int J Biol Macromol 2024; 254:128095. [PMID: 37972831 DOI: 10.1016/j.ijbiomac.2023.128095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Liquid-liquid phase separation (LLPS) and droplet formation by LLPS are key concepts used to explain compartmentalization in living cells. Protein contact to a membrane surface is considered an important process for protein organization in a liquid phase or during transition to a solid or liquid dispersion state. The direct experimental comprehensive investigation is; however, not performed on the surface-droplet interaction and phase transition. In the present study, we constructed simple and reproducible experiments to analyze the structural transition of aggregates and droplets in an ovalbumin (OVA) and lysozyme (LYZ) complex on glass slides with various coatings. The difference in droplet-surface interaction may only be important in the boundary region between aggregates and droplets of a protein mixture, as shown in the phase diagram. Co-aggregates of OVA-LYZ changed to droplet-like circular forms during incubation. In contrast, free l-lysine resulted in the uniform droplet-to-solid phase separation at lower concentrations and dissolved any structures at higher concentrations. These results represent the first phase-diagram-based analysis of the phase transition of droplets in a protein mixture and a comparison of surface-surface and small molecular-droplet structure interactions.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Toya Yoshida
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
5
|
Pereira M, Rodrigues ARO, Amaral L, Côrte-Real M, Santos-Pereira C, Castanheira EMS. Bovine Lactoferrin-Loaded Plasmonic Magnetoliposomes for Antifungal Therapeutic Applications. Pharmaceutics 2023; 15:2162. [PMID: 37631376 PMCID: PMC10458800 DOI: 10.3390/pharmaceutics15082162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added value to enhance its biological activities. Plasmonic magnetoliposomes (PMLs) arise as promising nanocarriers for dual hyperthermia (magneto-photothermia) and local chemotherapy, since the combination of magnetic and gold nanoparticles (NPs) in a single nanosystem (multifunctional liposomes) enables the targeting and controlled release of loaded drugs. In this work, plasmonic magnetoliposomes (PMLs) containing manganese ferrite nanoparticles (28 nm size) and gold nanoparticles (5-7.5 nm size), functionalized with 11-mercaptoundecanoic acid or octadecanethiol, were prepared and loaded with bLf. The NPs' optical, magnetic and structural properties were measured via UV/vis/NIR absorption spectroscopy, SQUID and TEM, respectively. The Specific Absorption Rate (SAR) was calculated to assess the capabilities for magnetic and photothermal hyperthermia. Finally, the antifungal potential of bLf-loaded PMLs and their mechanism of internalization were assessed in Saccharomyces cerevisiae by counting the colony forming units and using fluorescence microscopy. The results demonstrate that PMLs are mainly internalized through an energy- and temperature-dependent endocytic process, though the contribution of a diffusion component cannot be discarded. Most notably, only bLf-loaded plasmonic magnetoliposomes display cytotoxicity with an efficiency similar to free bLf, attesting their promising potential for bLf delivery in the context of antifungal therapeutic interventions.
Collapse
Affiliation(s)
- Mélanie Pereira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| | - Leslie Amaral
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Cátia Santos-Pereira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Yang SZ, Peng LT. Significance of the plasma membrane H +-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:31-53. [PMID: 37597947 DOI: 10.1016/bs.aambs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
Collapse
Affiliation(s)
- S Z Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.
| | - L T Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
7
|
Ji M, Li J, Fan L. Synergistic effect of oregano essential oil fumigation combined with infrared heating on the inactivation of Aspergillus flavus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Santos-Pereira C, Guedes JP, Ferreira D, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs intracellular trafficking, disrupts cholesterol-rich lipid rafts and inhibits glycolysis of highly metastatic cancer cells harbouring plasmalemmal V-ATPase. Int J Biol Macromol 2022; 220:1589-1604. [PMID: 36116593 DOI: 10.1016/j.ijbiomac.2022.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
9
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
10
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
11
|
A review on lactoferrin as a proton pump inhibitor. Int J Biol Macromol 2022; 202:309-317. [PMID: 35038474 DOI: 10.1016/j.ijbiomac.2022.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Lactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein. Information on this subject has not been systematically analysed before, hence herein we review the current state of art on the effect of Lf on proton pumping ATPases. Though structurally different, we propose that Lf holds a proton pump inhibitor (PPI)-like activity based on the functional resemblance with the classical inhibitors of the stomach H+/K+-ATPase. The downstream events and outcomes of the PPI-like activity of Lf, as well as its impact for the development of improved Lf applications are also discussed.
Collapse
|
12
|
The milk-derived lactoferrin inhibits V-ATPase activity by targeting its V1 domain. Int J Biol Macromol 2021; 186:54-70. [PMID: 34237360 DOI: 10.1016/j.ijbiomac.2021.06.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, herein we aimed to fill this gap by employing a five-stage computational approach. Molecular dynamics simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering, which allowed retrieving representative structures, to then perform protein-protein docking. Subsequently, molecular dynamics simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build a final ranking based on the binding affinities. Detailed atomist analysis of the top ranked complexes clearly indicates that Lf binds to the V1 cytosolic domain of V-ATPase. Particularly, our data suggest that Lf binds to the interfaces between A/B subunits, where the ATP hydrolysis occurs, thus inhibiting this process. The free energy decomposition analysis further identified key binding residues that will certainly aid in the rational design of follow-up experimental studies, hence bridging computational and experimental biochemistry.
Collapse
|
13
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|