1
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
2
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
3
|
Afloarea OT, Nacu I, Vereștiuc L, Yilmaz CN, Panainte AD, Peptu CA, Ostafe IG, Bibire N. In Vitro and Ex Vivo Evaluation of Novel Methacrylated Chitosan-PNIPAAm-Hyaluronic Acid Hydrogels Loaded with Progesterone for Applications in Vaginal Delivery. Polymers (Basel) 2024; 16:2160. [PMID: 39125186 PMCID: PMC11313938 DOI: 10.3390/polym16152160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Miscarriage is defined as the loss of a pregnancy before 24 weeks and administration of progesterone in pregnancy has considerably decreased the risk of premature birth. Progesterone (PGT) starting from the luteal phase stabilizes pregnancy, promotes differentiation of the endometrium, and facilitates the implantation of the embryo. Within the present study, novel hybrid hydrogels based on chitosan methacrylate (CHT), hyaluronic acid (HA), and poly(N-isopropylacrylamide) (PNIPAAm) for vaginal delivery of progesterone were evaluated. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) for structural identity assessment and evaluation of their morphological aspects. The ability to swell, the release capacity, enzymatic degradation, cytotoxicity, and mucoadhesion were also reported. The characterized hydrogels demonstrated mucoadhesive properties in contact with the vaginal tissue of swine and bovine origin as substrates, and biodegradability and controlled release in a simulated vaginal environment. Cytocompatibility tests confirmed the ability of the hydrogels and progesterone to support cell viability and growth. The results showed pH-dependent behavior, controlled drug release, good cytocompatibility, and mucoadhesive properties. The hydrogels with higher chitosan amounts demonstrated better bioadhesive properties. This study provides insights into the potential of these hydrogels for the controlled vaginal delivery of progesterone, with promising therapeutic effects and no cytotoxicity observed. The experimental results indicated that a composition with a moderate content of PNIPAAm was suitable for the controlled delivery of progesterone.
Collapse
Affiliation(s)
- Oana-Teodora Afloarea
- Doctoral School, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Isabella Nacu
- Faculty of Medical Bioengineering, Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Liliana Vereștiuc
- Faculty of Medical Bioengineering, Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Cătălina Natalia Yilmaz
- Faculty of Science, Department of Chemistry, Biochemistry Division, Dokuz Eylül University, Kültür Mah. Cumhuriyet Bulv. No:144 Alsancak, 35210 Izmir, Turkey
| | - Alina Diana Panainte
- Faculty of Pharmacy, Department of Analytical Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania; (A.D.P.); (N.B.)
| | - Cătălina Anișoara Peptu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Department of Natural and Synthetic Polymers, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Iulia-Giorgiana Ostafe
- “Cuza Voda” Obstetrics and Gynecology Clinical Hospital, 34 Cuza Voda Street, 700038 Iasi, Romania;
| | - Nela Bibire
- Faculty of Pharmacy, Department of Analytical Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania; (A.D.P.); (N.B.)
| |
Collapse
|
4
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Khan S, Patel MP, Patni AD, Cha SJ. Targeting Plasmodium Life Cycle with Novel Parasite Ligands as Vaccine Antigens. Vaccines (Basel) 2024; 12:484. [PMID: 38793735 PMCID: PMC11125637 DOI: 10.3390/vaccines12050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The WHO reported an estimated 249 million malaria cases and 608,000 malaria deaths in 85 countries in 2022. A total of 94% of malaria deaths occurred in Africa, 80% of which were children under 5. In other words, one child dies every minute from malaria. The RTS,S/AS01 malaria vaccine, which uses the Plasmodium falciparum circumsporozoite protein (CSP) to target sporozoite infection of the liver, achieved modest efficacy. The Malaria Vaccine Implementation Program (MVIP), coordinated by the WHO and completed at the end of 2023, found that immunization reduced mortality by only 13%. To further reduce malaria death, the development of a more effective malaria vaccine is a high priority. Three malaria vaccine targets being considered are the sporozoite liver infection (pre-erythrocytic stage), the merozoite red blood cell infection (asexual erythrocytic stage), and the gamete/zygote mosquito infection (sexual/transmission stage). These targets involve specific ligand-receptor interactions. However, most current malaria vaccine candidates that target two major parasite population bottlenecks, liver infection, and mosquito midgut infection, do not focus on such parasite ligands. Here, we evaluate the potential of newly identified parasite ligands with a phage peptide-display technique as novel malaria vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA 31207, USA; (S.K.); (M.P.P.); (A.D.P.)
| |
Collapse
|
7
|
Yang Y, Li H, Wang F, Jiang P, Wang G. An arabinogalactan extracted with alkali from Portulaca oleracea L. used as an immunopotentiator and a vaccine carrier in its conjugate to BSA. Carbohydr Polym 2023; 316:120998. [PMID: 37321719 DOI: 10.1016/j.carbpol.2023.120998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A neutral polysaccharide (POPAN) from Portulaca oleracea L. was isolated with alkali and purified to obtain. HPLC analysis suggested POPAN (40.9 kDa) was mainly composed of Ara and Gal with traces of Glc and Man. GC-MS and 1D/2D NMR analysis confirmed POPAN was an arabinogalactan possessing a backbone mainly composing of (1 → 3)-α-l-Araf-linked arabinan and (1 → 4)-β-d-Galp-linked galactan, which was different from structure characterization of typical arabinogalactan reported previously. Importantly, we conjugated POPAN to BSA (POPAN-BSA), and detected the potential and mechanism of POPAN as an adjuvant in POPAN-BSA. The results indicated, in contrast to BSA, POPAN-BSA induced the robust and persistent humoral response in addition to the cellular response with Th2-biased immunity response in mice. Further investigations of mechanism revealed effects of POPAN-BSA were a result of POPAN as the adjuvant to: 1) significantly activate DCs in vitro or in vivo including the upgraded expressions of costimulators, MHCs and cytokines; 2) greatly facilitated the capture of BSA. Overall, present studies demonstrated POPAN can be a potential adjuvant as an immunopotentiator and an antigen delivery vehicle in its conjugate to recombinant protein vaccines.
Collapse
Affiliation(s)
- Ye Yang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hong Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Feihe Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Peng Jiang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Guiyun Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
8
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Tang W, Wang J, Hou H, Li Y, Wang J, Fu J, Lu L, Gao D, Liu Z, Zhao F, Gao X, Ling P, Wang F, Sun F, Tan H. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol 2023; 240:124398. [PMID: 37059277 DOI: 10.1016/j.ijbiomac.2023.124398] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250001, Shandong, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jie Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Lu Lu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, Shandong, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, Shandong, China; School of Pharmaceutical sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
10
|
Li H, Liang X, Sun W, Zhuang B, Cao Y, Zhang J, Shen J, Wang Y, Yu L. Immunological evaluation of a recombinant vaccine delivered with an analogous hyaluronic acid chitosan nanoparticle-hydrogel against Toxoplasma gondii in mice. Microb Pathog 2023; 179:106092. [PMID: 37003502 DOI: 10.1016/j.micpath.2023.106092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is not only a threat to the public health but it also poses adverse impacts on the livestock industry. This study aimed to develop a recombinant vaccine composed of T. gondii microneme protein 6 (TgMIC6) and T. gondii rhoptry protein 18 (TgROP18).The vaccine was delivered with a novel vector, named analogous hyaluronic acid chitosan nanoparticle-hydrogel (AHACNP-HG) and its immune protection was evaluated. METHODS The recombinant MIC6 and ROP18 proteins were obtained by affinity chromatography and loaded onto AHACNP-HG by magnetic stirring. The characterizations of AHACNP-HG were investigated, including its structure, rheological property, nanoparticle size and zeta potential, its ability to release protein in vitro and toxicology in vivo. The immunological and anti-infection effects of AHACNP-HG/rMIC6/rROP18 were examined in the mice model. RESULTS AHACNP-HG presented a characteristic of composite system and possessed biosecurity with excellent protein control-release property. AHACNP-HG/rMIC6/rROP18 vaccine enhanced a mixed Th1/Th2 cellular immune response accompanied by an increased level of the cytokines, IFN-γ and IL-10. It also provoked a stronger humoral immune response. Additionally, after challenge with T. gondii tachyzoite, AHACNP-HG/rMIC6/rROP18 inoculation prolonged the survival time of mice. CONCLUSION Our data indicated that mixed rMIC6 and rROP18 induced strong immune response and played a certain protective role in controlling T. gondii infection, and the novel adjuvant AHACNP-HG improved modestly some immunogenicity properties in mouse model, which indicated that it can be used as a novel delivery system in vaccine development.
Collapse
Affiliation(s)
- Hu Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Clinical Laboratory, Taihe People's Hospital, Fuyang, 236600, China.
| | - Xiao Liang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Wenze Sun
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Junling Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongzhong Wang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Wu S, Guo W, Li B, Zhou H, Meng H, Sun J, Li R, Guo D, Zhang X, Li R, Qu W. Progress of polymer-based strategies in fungal disease management: Designed for different roles. Front Cell Infect Microbiol 2023; 13:1142029. [PMID: 37033476 PMCID: PMC10073610 DOI: 10.3389/fcimb.2023.1142029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Fungal diseases have posed a great challenge to global health, but have fewer solutions compared to bacterial and viral infections. Development and application of new treatment modalities for fungi are limited by their inherent essential properties as eukaryotes. The microorganism identification and drug sensitivity analyze are limited by their proliferation rates. Moreover, there are currently no vaccines for prevention. Polymer science and related interdisciplinary technologies have revolutionized the field of fungal disease management. To date, numerous advanced polymer-based systems have been developed for management of fungal diseases, including prevention, diagnosis, treatment and monitoring. In this review, we provide an overview of current needs and advances in polymer-based strategies against fungal diseases. We high light various treatment modalities. Delivery systems of antifungal drugs, systems based on polymers' innate antifungal activities, and photodynamic therapies each follow their own mechanisms and unique design clues. We also discuss various prevention strategies including immunization and antifungal medical devices, and further describe point-of-care testing platforms as futuristic diagnostic and monitoring tools. The broad application of polymer-based strategies for both public and personal health management is prospected and integrated systems have become a promising direction. However, there is a gap between experimental studies and clinical translation. In future, well-designed in vivo trials should be conducted to reveal the underlying mechanisms and explore the efficacy as well as biosafety of polymer-based products.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongqi Meng
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Junyi Sun
- Changchun American International School, Changchun, China
| | - Ruiyan Li
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Deming Guo
- Orthpoeadic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Rui Li, ; Wenrui Qu,
| |
Collapse
|
12
|
Afloarea OT, Cheaburu Yilmaz CN, Verestiuc L, Bibire N. Development of Vaginal Carriers Based on Chitosan-Grafted-PNIPAAm for Progesterone Administration. Gels 2022; 8:596. [PMID: 36135308 PMCID: PMC9498816 DOI: 10.3390/gels8090596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan-based hydrogels possess numerous advantages, such as biocompatibility and non-toxicity, and it is considered a proper material to be used in biomedical and pharmaceutical applications. Vaginal administration of progesterone represents a viable alternative for maintaining pregnancy and reducing the risk of miscarriage and in supporting the corpus luteum during fertilization cycles. This study aimed to develop new formulations for vaginal administration of progesterone (PGT). A previously synthesized responsive chitosan-grafted-poly (N-isopropylacrylamide) (CS-g-PNIPAAm) was formulated in various compositions with polyvinyl alcohol (PVA) as external crosslinking agent to obtain pH- and temperature-dependent hydrogels; the hydrogels had the capacity to withstand shear forces encountered in the vagina due to its mechanism of swelling once in contact with vaginal fluids. Three different hydrogels based on grafted chitosan were analyzed via Fourier-transform infrared spectroscopy (FTIR), swelling tests, in vitro drug release, and bioadhesion properties by TA.XTplus texture analysis. A higher amount of PVA decreased the swelling and the bioadhesion capacities of the hydrogel. All hydrogels showed sensitivity to temperature and pH in terms of swelling and in vitro delivery characteristics. By loading progesterone, the studied hydrogels seemed to possess even higher sensitivity than drug-free matrices. The release profile of the active substance and the bioadhesion characteristics recommended the CS-g-PNIPAAm/PVA 80/20 +PGT (P1) hydrogel as a proper constituent for the vaginal formulation for progesterone administration.
Collapse
Affiliation(s)
- Oana-Teodora Afloarea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | | | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| |
Collapse
|
13
|
Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG, Patel SK, Acharya N. Vaccines against candidiasis: Status, challenges and emerging opportunity. Front Cell Infect Microbiol 2022; 12:1002406. [PMID: 36061876 PMCID: PMC9433539 DOI: 10.3389/fcimb.2022.1002406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candidiasis is a mycosis caused by opportunistic Candida species. The occurrence of fungal infections has considerably increased in the last few years primarily due to an increase in the number of immune-suppressed individuals. Alarming bloodstream infections due to Candida sp. are associated with a higher rate of morbidity and mortality, and are emerged as major healthcare concerns worldwide. Currently, chemotherapy is the sole available option for combating fungal diseases. Moreover, the emergence of resistance to these limited available anti-fungal drugs has further accentuated the concern and highlighted the need for early detection of fungal infections, identification of novel antifungal drug targets, and development of effective therapeutics and prophylactics. Thus, there is an increasing interest in developing safe and potent immune-based therapeutics to tackle fungal diseases. In this context, vaccine design and its development have a priority. Nonetheless, despite significant advances in immune and vaccine biology over time, a viable commercialized vaccine remains awaited against fungal infections. In this minireview, we enumerate various concerted efforts made till date towards the development of anti-Candida vaccines, an option with pan-fugal vaccine, vaccines in the clinical trial, challenges, and future opportunities.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Manish Singh
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Narottam Acharya, ;
| |
Collapse
|
14
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
15
|
Al-Abboodi A, Mhouse Alsaady HA, Banoon SR, Al-Saady M. Conjugation strategies on functionalized iron oxide nanoparticles as a malaria vaccine delivery system. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vaccination has been used effectively to protect from infectious diseases and non-infectious diseases such as cancer and allergies. Different forms of particulate arrangements, including nanoparticles, virus-like particles (VLPs), and virosomes, have been built recently depending on the type of pathogen to be targeted. The ability to conjugate the recombinant Plasmodium yoelii, 19-kDa C-terminal fragment of merozoite surface protein 1 (PyMSP119) on the surface of superparamagnetic magnetite nanoparticles (SPIONs) was explored as a new technique of enhancing vaccination against malaria. Different conjugation strategies were performed to correlate the effects of nanoparticle chemistry surfaces to bind later with the malaria protein. (SPIONs) were prepared by chemical coprecipitation method and coated with 3-aminopropyltriethoxysilane (APTS) alone (as a surface coater), or with both APTS and polyethylene glycol (PEG) (as a shield to protect the malaria protein from proteolytic enzymes) by using a modified silanisation method.
X-ray powder diffraction (XRD, Philips Model) patterns indicated that the SPIONs were of high purity with an inverse spinal structure. Fourier Transform Infrared Spectroscopy (FTIR) was collected using PerkinElmer Spectrum 100 Series; spectra of uncoated and coated magnetite nanoparticles confirmed that the silane layer had been coated on the surface Fe3O4. The SPIONs were superparamagnetic as investigated by Vibrating Sample Magnetometry (VSM, Princeton Applied Research, model ISS) and relatively stable in aqueous phase at room temperature and could also be quickly recovered from suspension using an external magnet. Introduce the carboxyl groups onto the SPIONs surfaces, resulting in a relatively high protein binding capacity onto the nanoparticle surfaces.
The bare particles had a mean size of around 20 nm with a relatively narrow size distribution. 82% of African Green Monkey fibroblast (COS-7) were alive in nanoparticle suspension using the MTT assay method. The quantity of protein explicitly bound to particles was determined using Sodium Dodecyl Sulfate (SDS) - Polyacrylamide Gel Electrophoresis (PAGE). SDS–PAGE. When the conjugation blend was prepared in EDC, there was approximately 100% binding between PyMSP119 and the Fe3O4-COOH particles because no protein band was apparent at the expected molecular weight for PyMSP119 (45 kDa).
The current study investigates the theory that the gradual, persistent release of the malaria antigen may stimulate and maintain an elevated level of immune response for an extended period in vivo, which will be the scope of future work.
Collapse
Affiliation(s)
- Aswan Al-Abboodi
- Department of Biology, College of Science, University of Misan, Misan, Iraq. ORCID: 0000-0003-1063-9900
| | - Hussain A. Mhouse Alsaady
- Department of Biology, College of Science, University of Misan, Misan, Iraq. ORCID: 0000-0001-6111-400X
| | - Shaima R. Banoon
- Department of Biology, College of Science, University of Misan, Misan, Iraq. ORCID: 0000-0002-9133-2259
| | - Mohammed Al-Saady
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton,VIC 3800, Australia
| |
Collapse
|
16
|
Structure analysis of a non-esterified homogalacturonan isolated from Portulaca oleracea L. and its adjuvant effect in OVA-immunized mice. Int J Biol Macromol 2021; 177:422-429. [PMID: 33631260 DOI: 10.1016/j.ijbiomac.2021.02.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/16/2023]
Abstract
We isolated and purified a pectin from Portulaca oleracea L. (P. oleracea), and analysed its structure by high-performance size exclusion chromatography (HPSEC), high-performance liquid chromatography (HPLC), gas chromatograph-mass spectrometer (GC-MS), fourier transform infrared spectroscopy (FT-IR), and 1H, 13C nuclear magnetic resonance spectroscopy (NMR). The data indicated that this pectin (designated as POPW-HG) was a linear non-esterified homogalacturonan, which is unique in plants; its molecular weight was around 41.2 kDa. Meanwhile, POPW-HG as an adjuvant was evaluated in the mice immunized with OVA subcutaneously. OVA-specific antibody titres from the sera of immunized mice were tested by ELISA. It showed that POPW-HG significantly enhanced OVA-specific antibody titres (IgG, IgG1, and IgG2b) (p < 0.05) in a dose-dependent manner in the OVA-immunized mice, preliminarily indicating POPW-HG could increase an antibody response, Th1 and Th2 immune response. In addition, the ratio of IgG1/IgG2b suggested POPW-HG induced a Th2-biased response in the OVA-immunized mice. The results demonstrated POPW-HG could be a potential adjuvant candidate in vaccines.
Collapse
|