1
|
An Z, Li X, Wang Q, Xu W, Zhang D. Sensillar Ultrastructure of the Antennae and Maxillary Palps of the Warble Fly Oestromyia leporina (Pallas, 1778) (Diptera: Oestridae). INSECTS 2024; 15:574. [PMID: 39194779 DOI: 10.3390/insects15080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Despite the development of molecular techniques, morphological phylogeny still remains integral in underpinning the relationship between some clades of Calyptratae, especially the ones with fast radiation, such as those in Oestridae (Diptera: Brachycera), yet few synapomorphy has been proposed for adults in this family. Using scanning electron microscopy, we investigated the morphological structure and ultrastructure of the antennae and maxillary palps of adult Oestromyia leporina (Hypodermatinae, Oestridae). One type of trichoid sensillum (Tr), three types of basiconic sensilla (Ba I, Ba II, and Ba III), one type of coeloconic sensillum (Co I), and one type of clavate sensillum (Cl) were found on the antennal postpedicel. Surprisingly, this species has the most complex types of sensilla on the maxillary palps that have been reported in Calyptratae so far, with two types of coeloconic sensilla (Co II and Co III) and two types of mechanoreceptors. We then identified three common characteristics on the arista of Oestridae (Hypodermatinae, Oestrinae, Gasterophilinae and Cuterebrinae) that are potential synapomorphies. These characteristics indicate the value of the morphology of maxillary palps and aristae in taxonomy studies of Calyptratae.
Collapse
Affiliation(s)
- Zhuowei An
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Xinyu Li
- The College of Forestry, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Qike Wang
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wentian Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| |
Collapse
|
2
|
Pang S, Zhang Q, Liang L, Qin Y, Li S, Bian X. Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae). INSECTS 2024; 15:413. [PMID: 38921128 PMCID: PMC11204050 DOI: 10.3390/insects15060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 bp, indicating double-stranded circular structures. The length of the control region was the main cause of the difference in mitochondrial genome length among the nine species. All the mitogenomes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (CR). The majority strand encoded 23 genes, and the minority strand encoded 14 genes. A phylogenetic analysis reaffirmed the monophyletic status of each subfamily, but the monophysitism of Xizicus, Xiphidiopsis and Phlugiolopsis was not supported.
Collapse
Affiliation(s)
- Siyu Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Qianwen Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Lili Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Yanting Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Shan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Xun Bian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
3
|
Guo X, Wang H, Fu K, Ding X, Deng J, Guo W, Rao Q. First report of the complete mitochondrial genome of Carpomya pardalina (Bigot) (Diptera: Tephritidae) and phylogenetic relationships with other Tephritidae. Heliyon 2024; 10:e29233. [PMID: 38681631 PMCID: PMC11053197 DOI: 10.1016/j.heliyon.2024.e29233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Carpomya pardalina is known for its potential invasiveness, which poses a significant and alarming threat to Cucurbitaceae crops. It is considered a highly perilous pest species that requires immediate attention for quarantine and prevention. Due to the challenges in distinguishing pests of the Tephritidae family based on morphological characteristics, it is imperative to elucidate the mitochondrial genomic information of C. pardalina. In this study, the mitochondrial genome sequence of C. pardalina was determined and analyzed using next-generation sequencing. The results revealed that the mitogenome sequence had a total length of 16,257 bp, representing a typical circular molecule. It consisted of 13 PCGs, two rRNA genes, 22 tRNA genes and a non-coding region. The structure and organization of the mitochondrial genome of C. pardalina were found to be typical and similar to the published homologous sequences of other fruit flies in the Tephritidae family. Phylogenetic analysis confirmed that C. pardalina belongs to the Carpomya genus, which is consistent with traditional morphological taxonomy. Additionally, Carpomya and Rhagoletis were identified as sister groups. This study presents the first report of the complete mitochondrial genome of C. pardalina, which can serve as a valuable resource for future investigations in species diagnosis, evolutionary biology, prevention and control measures.
Collapse
Affiliation(s)
- Xianting Guo
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Kaiyun Fu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Xinhua Ding
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Jianyu Deng
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenchao Guo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Bio-safety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
| | - Qiong Rao
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
4
|
Liu J, Chen J, Cai X, Yang D, Li X, Liu X. Comparative Analysis of the Mitochondrial Genomes of Chloropidae and Their Implications for the Phylogeny of the Family. Int J Mol Sci 2024; 25:2920. [PMID: 38474171 PMCID: PMC10932363 DOI: 10.3390/ijms25052920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Chloropidae, commonly known as grass flies, represent the most taxonomically diverse family of Diptera Carnoidea, comprising over 3000 described species worldwide. Previous phylogenetic studies of this family have predominantly relied on morphological characters, with mitochondrial genomes being reported in a few species. This study presents 11 newly sequenced mitochondrial genomes (10 Chloropidae and 1 Milichiidae) and provides the first comprehensive comparative analysis of mitochondrial genomes for Chloropidae. Apart from 37 standard genes and the control region, three conserved intergenic sequences across Diptera Cyclorrhapha were identified in all available chloropid mitochondrial genomes. Evolutionary rates within Chloropidae exhibit significant variation across subfamilies, with Chloropinae displaying higher rates than the other three subfamilies. Phylogenetic relationships based on mitochondrial genomes were inferred using maximum likelihood and Bayesian methods. The monophyly of Chloropidae and all four subfamilies is consistently strongly supported, while subfamily relationships within Chloropidae remain poorly resolved, possibly due to rapid evolution.
Collapse
Affiliation(s)
- Jiuzhou Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.C.)
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Jiajia Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.C.)
| | - Xiaodong Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Ding Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Xuankun Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Xiaoyan Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.C.)
| |
Collapse
|
5
|
Pei W, Xu W, Li H, Yan L, Gai Y, Yang N, Yang J, Chen J, Peng H, Pape T, Zhang D, Zhang C. Unusual rearrangements of mitogenomes in Diptera revealed by comparative analysis of 135 tachinid species (Insecta, Diptera, Tachinidae). Int J Biol Macromol 2024; 258:128997. [PMID: 38154713 DOI: 10.1016/j.ijbiomac.2023.128997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The Tachinidae is one of the most speciose families in Diptera, and the exclusively parasitoid species play an important role in regulating populations of many herbivorous insects in ecosystems, including many agricultural pests. To better comprehend the characteristics and evolution of the mitochondrial genome for the Tachinidae, we are adding a massive amount of new molecular data by assembling the mitogenomes for 71 genera and 135 species from all four tachinid subfamilies through next-generation sequencing, and we are presenting the most comprehensive mitogenomic phylogenetic analysis of this family so far. Extensive rearrangements observed in the mitogenome of Admontia podomyia (Exoristinae) are unique for the entire suborder Cyclorrhapha. The rearrangement pattern suggests that the process involved a tandem duplication of the complete mitogenome, followed by both random and nonrandom loss of one copy of each gene. Additionally, five minor mitogenome rearrangements are discovered and described in three subfamilies. We present the largest species-level phylogenetic hypothesis for Tachinidae to date, based on mitogenomes of 152 species of Tachinidae, representing all four subfamilies and with five non-tachinid outgroups. Our analyses support the monophyly of the Tachinidae and most tribes and genera were recovered with good support, but the higher-level phylogenetic relationships within Tachinidae were poorly resolved, indicating that mitogenome data alone are not enough to unambiguously resolve the deeper phylogenetic relationships within Tachinidae.
Collapse
Affiliation(s)
- Wenya Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Wentian Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Henan Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Yi Gai
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Nan Yang
- Serving Officer in Administration Department of Baihua Mountain Reserve, Beijing 10083, China
| | - Jun Yang
- Serving Officer in Administration Department of Baihua Mountain Reserve, Beijing 10083, China
| | - Jinliang Chen
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Honglin Peng
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Thomas Pape
- Natural History Museum of Denmark, Science Faculty, University of Copenhagen, Copenhagen, Denmark
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China.
| | - Chuntian Zhang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
6
|
Wang L, Chen J, Xue X, Qin G, Gao Y, Li K, Zhang Y, Li XJ. Comparative analysis of mitogenomes among three species of grasshoppers (Orthoptera: Acridoidea: Gomphocerinae) and their phylogenetic implications. PeerJ 2023; 11:e16550. [PMID: 38111661 PMCID: PMC10726767 DOI: 10.7717/peerj.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
Whole mitochondrial genomes have been widely used in phylogenetic analysis, population genetics and biogeography studies. This study sequenced and characterized three complete mitochondrial genomes (Dasyhippus peipingensis, Myrmeleotettix palpalis, Aeropedellus prominemarginis) and determined their phylogenetic position in Acrididae. The length of the mitochondrial genomes ranged from 15,621-15,629 bp and composed of 13 PCGs, 2 rRNA, 22 tRNA genes and an AT control region. The arrangement and structure of the mitochondrial genomes were similar to those of other invertebrates. Comparative genomics revealed that the three mitochondrial genomes were highly conserved in terms of gene size, structure, and codon usage, all PCGs were purified selections with an ATN start codon and a TAN stop codon. All tRNAs could be folded into the typical clover-leaf structure, except tRNA Ser (AGN) that lacked a dihydrouridine (DHU) arm. Phylogenetic analysis based on 13 PCGs of 34 Acrididae species and seven outgroup species revealed that differences in the shape of antennae within the family Acrididae should be given less weight as a taxonomic character for higher-level classification. Moreover, the divergence time estimates indicates that in Gomphocerinae, the species with clubbed antennae were formed within the nearest 18 Mya, and Pacris xizangensis is more ancient.
Collapse
Affiliation(s)
- Li Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jianyu Chen
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaobao Xue
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guoqing Qin
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yuanyi Gao
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Kai Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yulong Zhang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
7
|
Shao S, Yang L, Hu G, Li L, Wang Y, Tao L. Application of omics techniques in forensic entomology research. Acta Trop 2023; 246:106985. [PMID: 37473953 DOI: 10.1016/j.actatropica.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
With the advent of the post-genome era, omics technologies have developed rapidly and are widely used, including in genomics, transcriptomics, proteomics, metabolomics, and microbiome research. These omics techniques are often based on comprehensive and systematic analysis of biological samples using high-throughput analysis methods and bioinformatics, to provide new insights into biological phenomena. Currently, omics techniques are gradually being applied to forensic entomology research and are useful in species identification, phylogenetics, screening for developmentally relevant differentially expressed genes, and the interpretation of behavioral characteristics of forensic-related species at the genetic level. These all provide valuable information for estimating the postmortem interval (PMI). This review mainly discusses the available omics techniques, summarizes the application of omics techniques in forensic entomology, and their future in the field.
Collapse
Affiliation(s)
- Shipeng Shao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Lijun Yang
- Criminal Police Branch, Suzhou Public Security Bureau, Renmin Road, Suzhou, China
| | - Gengwang Hu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China.
| | - Luyang Tao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| |
Collapse
|
8
|
Kapoor S, Young ND, Yang YT, Batterham P, Gasser RB, Bowles VM, Anstead CA, Perry T. Mitochondrial genomic investigation reveals a clear association between species and genotypes of Lucilia and geographic origin in Australia. Parasit Vectors 2023; 16:279. [PMID: 37573420 PMCID: PMC10423422 DOI: 10.1186/s13071-023-05902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Lucilia cuprina and L. sericata (family Calliphoridae) are globally significant ectoparasites of sheep. Current literature suggests that only one of these blowfly subspecies, L. cuprina dorsalis, is a primary parasite causing myiasis (flystrike) in sheep in Australia. These species and subspecies are difficult to distinguish using morphological features. Hence, being able to accurately identify blowflies is critical for diagnosis and for understanding their relationships with their hosts and environment. METHODS In this study, adult blowflies (5 pools of 17 flies; n = 85) were collected from five locations in different states [New South Wales (NSW), Queensland (QLD), Tasmania (TAS), Victoria (VIC) and Western Australia (WA)] of Australia and their mitochondrial (mt) genomes were assembled. RESULTS Each mt genome assembled was ~ 15 kb in size and encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a control region. The Lucilia species mt genomes were conserved in structure, and the genes retained the same order and direction. The overall nucleotide composition was heavily biased towards As and Ts-77.7% of the whole genomes. Pairwise nucleotide diversity suggested divergence between Lucilia cuprina cuprina, L. c. dorsalis and L. sericata. Comparative analyses of these mt genomes with published data demonstrated that the blowflies collected from sheep farm in TAS clustered within a clade with L. sericata. The flies collected from an urban location in QLD were more closely related to L. sericata and represented the subspecies L. c. cuprina, whereas the flies collected from sheep farms in NSW, VIC and WA represented the subspecies L. c. dorsalis. CONCLUSIONS Phylogenetic analyses of the mt genomes representing Lucilia from the five geographic locations in Australia supported the previously demonstrated paraphyly of L. cuprina with respect to L. sericata and revealed that L. c. cuprina is distinct from L. c. dorsalis and that L. c. cuprina is more closely related to L. sericata than L. c. dorsalis. The mt genomes reported here provide an important molecular resource to develop tools for species- and subspecies-level identification of Lucilia from different geographical regions across Australia.
Collapse
Affiliation(s)
- Shilpa Kapoor
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Ying Ting Yang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Philip Batterham
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Vernon M. Bowles
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Clare A. Anstead
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Building 400, Parkville, VIC 3010 Australia
| | - Trent Perry
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
9
|
Zhang N, Pu T, Wang J, Tan W, Yuan Z, Li C, Song Y. Phylogenetic Analysis of Two New Mitochondrial Genomes of Singapora shinshana and Seriana bacilla from the Karst Region of Southwest China. Genes (Basel) 2023; 14:1318. [PMID: 37510223 PMCID: PMC10379811 DOI: 10.3390/genes14071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Leafhoppers have been identified as a serious threat to different plants. To explore the characteristics of mitogenomes and reveal the phylogenetic positions of two species in the Typhlocybinae, complete mitogenomes of Singapora shinshana and Seriana bacilla were sequenced and annotated for the first time with lengths of 15,402 bp and 15,383 bp, respectively. The two mitogenomes contained 13 PCGs, 22 tRNA genes and 2 rRNA genes. The genome content, gene order, nucleotide composition, codon usage and amino acid composition are similar to those of other typical mitogenomes of Typhlocybinae. All 13 PCGs started with ATN codons, except for atp8 (TTA) and nad5 (TTG). All tRNAs were folded into a typical cloverleaf secondary structure, except for tRNA-Ser1 and tRNA-Val. Moreover, phylogenetic trees were constructed and analyzed based on all the PCGs from 42 mitogenomes using maximum likelihood (ML) and Bayesian inference (BI) methods. The results supported that eleven subfamilies are all monophyletic groups, S. shinshana and S. bacilla are members of Erythroneurini, but S. shinshana and the genus Empoascanara have a very close relationship with ((((Empoascanara sipra+ Empoascanara wengangensis) + Empoascanara dwalata) + Empoascanara gracilis) + S. shinshana), and S. bacilla is closely related to the genus Mitjaevia ((Mitjaevia dworakowskae + Mitjaevia shibingensis) + S. bacilla). These results provide valuable information for future study of evolutionary relationships in Typhlocybinae.
Collapse
Affiliation(s)
- Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Weiwen Tan
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Zhouwei Yuan
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| |
Collapse
|
10
|
Shi F, Yu T, Xu Y, Zhang S, Niu Y, Ge S, Tao J, Zong S. Comparative mitochondrial genomic analysis provides new insights into the evolution of the subfamily Lamiinae (Coleoptera: Cerambycidae). Int J Biol Macromol 2023; 225:634-647. [PMID: 36403761 DOI: 10.1016/j.ijbiomac.2022.11.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The genus Monochamus within the subfamily Lamiinae is the main vector of Bursaphelenchus xylophilus, which causes pine wilt disease and induces substantial economic and ecological losses. Only three complete mitochondrial genomes of the genus Monochamus have been sequenced to date, and no comparative mitochondrial genomic studies of Lamiinae have been conducted. Here, the mitochondrial genomes of two Monochamus species, M. saltuarius and M. urussovi, were newly sequenced and annotated. The composition and order of genes in the mitochondrial genomes of Monochamus species are conserved. All transfer RNAs exhibit the typical clover-leaf secondary structure, with the exception of trnS1. Similar to other longhorn beetles, Lamiinae mitochondrial genomes have an A + T bias. All 13 protein-coding genes have experienced purifying selection, and tandem repeat sequences are abundant in the A + T-rich region. Phylogenetic analyses revealed congruent topologies among trees inferred from the five datasets, with the monophyly of Acanthocinini, Agapanthiini, Batocerini, Dorcaschematini, Pteropliini, and Saperdini receiving high support. The findings of this study enhance our understanding of mitochondrial genome evolution and will provide a basis for future studies of population genetics and phylogenetic investigations in this group.
Collapse
Affiliation(s)
- Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Tao Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China.
| | - Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Li H, Zhang B, Pei W, Sun H, Chen J, Gao X, Peng H, Zhang D, Zhang C. Four New Species of Macquartia (Diptera: Oestroidea) from China and Phylogenetic Implications of Tachinidae. INSECTS 2022; 13:1096. [PMID: 36555006 PMCID: PMC9781235 DOI: 10.3390/insects13121096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Macquartia Robineau-Desvoidy (Diptera: Tachinidae, Tachininae) represents one of the most ancient evolutionary lineages of tachinids, parasitizing Chrysomelidae larvae. We found four new Macquartia species collected by malaise traps, namely M. brunneisquama sp. nov., M. chinensis sp. nov., M. flavifemorata sp. nov., and M. flavipedicel sp. nov. These new species are described and illustrated, and their comparison with congeners as well as an identification key to the 12 species of Macquartia from China known to date are included. To determine the significance of the mitogenome architecture and evolution across different tachinid lineages of this primitive taxonomic group, four complete mitochondrial genomes were sequenced, annotated, and analyzed. The gene arrangements are consistent with the ancestral insect mitogenomes. The full-length sequences and protein-coding genes (PCGs) of the mitogenomes of the four species are all AT-biased. Analyses of Ka/Ks and overall p-genetic distance demonstrated that nad5 showed the highest evolutionary rate and nad1/nad4L were the most conserved genes among the four species. Phylogenetic reconstruction based on 13 PCGs strongly supported the monophyly of Macquartia, and the relationships of the four species are (M. flavifemorata + (M. flavipedicel + (M. brunneisquama + M. chinensis))). This study will help enhance our understanding of the taxonomic status and phylogenetic relationships in Tachinidae.
Collapse
Affiliation(s)
- Henan Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Baihui Zhang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Wenya Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Haoran Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jinliang Chen
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Xinzhang Gao
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Honglin Peng
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Chuntian Zhang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
12
|
Cheng M, Liu Y, Zheng X, Zhang R, Feng K, Yue B, Du C, Zhou C. Characterization of Seventeen Complete Mitochondrial Genomes: Structural Features and Phylogenetic Implications of the Lepidopteran Insects. INSECTS 2022; 13:998. [PMID: 36354822 PMCID: PMC9694843 DOI: 10.3390/insects13110998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Lepidoptera (moths and butterflies) are widely distributed in the world, but high-level phylogeny in Lepidoptera remains uncertain. More mitochondrial genome (mitogenome) data can help to conduct comprehensive analysis and construct a robust phylogenetic tree. Here, we sequenced and annotated 17 complete moth mitogenomes and made comparative analysis with other moths. The gene order of trnM-trnI-trnQ in 17 moths was different from trnI-trnQ-trnM of ancestral insects. The number, type, and order of genes were consistent with reported moths. The length of newly sequenced complete mitogenomes ranged from 14,231 bp of Rhagastis albomarginatus to 15,756 bp of Numenes albofascia. These moth mitogenomes were typically with high A+T contents varied from 76.0% to 81.7% and exhibited negative GC skews. Among 13 protein coding genes (PCGs), some unusual initiations and terminations were found in part of newly sequenced moth mitogenomes. Three conserved gene-overlapping regions and one conserved intergenic region were detected among 17 mitogenomes. The phylogenetic relationship of major superfamilies in Macroheterocera was as follows: (Bombycoidea + Lasiocampoidea) + ((Drepanoidea + Geometroidea) + Noctuoidea)), which was different from previous studies. Moreover, the topology of Noctuoidea as (Notodontidae + (Erebidae + Noctuidae)) was supported by high Bayesian posterior probabilities (BPP = 1.0) and bootstrapping values (BSV = 100). This study greatly enriched the mitogenome database of moth and strengthened the high-level phylogenetic relationships of Lepidoptera.
Collapse
Affiliation(s)
- Meiling Cheng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kaize Feng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Du
- Baotou Teachers College, Baotou 014060, China
| | - Chuang Zhou
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Ge M, Wang D, Liang H, Zhu J, Shi X, Tian J. The complete mitochondrial genome of Fannia canicularis (Diptera: Fanniidae). Mitochondrial DNA B Resour 2022; 7:1841-1842. [PMID: 36325292 PMCID: PMC9621204 DOI: 10.1080/23802359.2022.2134744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023] Open
Abstract
Fannia canicularis (Linnaeus, 1761) is a species from the family Fanniidae. In this study, we sequenced and analyzed the complete mitochondrial genome of F. canicularis for the first time. The circular mitogenome is 15,826 bp in length, and includes 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding control region. The family Fanniidae formed a monophyletic clade in the phylogenetic tree based on 13 concatenated PCGs, sister to three other families in Diptera.
Collapse
Affiliation(s)
- Mihong Ge
- Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Dehuan Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Huan Liang
- Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Juhong Zhu
- Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xianfeng Shi
- Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Junhua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| |
Collapse
|
14
|
Li M, Liu M, Hu SY, Luo FZ, Yuan ML. Comparative mitogenomic analyses provide evolutionary insights into the retrolateral tibial apophysis clade (Araneae: Entelegynae). Front Genet 2022; 13:974084. [PMID: 36186478 PMCID: PMC9515440 DOI: 10.3389/fgene.2022.974084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The retrolateral tibial apophysis (RTA) clade is the largest spider lineage within Araneae. To better understand the diversity and evolution, we newly determined mitogenomes of ten RTA species from six families and performed a comparative mitogenomics analysis by combining them with 40 sequenced RTA mitogenomes available on GenBank. The ten mitogenomes encoded 37 typical mitochondrial genes and included a large non-coding region (putative control region). Nucleotide composition and codon usage were well conserved within the RTA clade, whereas diversity in sequence length and structural features was observed in control region. A reversal of strand asymmetry in nucleotide composition, i.e., negative AT-skews and positive GC-skews, was observed in each RTA species, likely resulting from mitochondrial gene rearrangements. All protein-coding genes were evolving under purifying selection, except for atp8 whose Ka/Ks was larger than 1, possibly due to positive selection or selection relaxation. Both mutation pressure and natural selection might contribute to codon usage bias of 13 protein-coding genes in the RTA lineage. Phylogenetic analyses based on mitogenomic data recovered a family-level phylogeny within the RTA; {[(Oval calamistrum clade, Dionycha), Marronoid clade], Sparassidae}. This study characterized RTA mitogenomes and provided some new insights into the phylogeny and evolution of the RTA clade.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Fang-Zhen Luo
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Ming-Long Yuan,
| |
Collapse
|
15
|
Zheng X, Zhang R, Yue B, Wu Y, Yang N, Zhou C. Enhanced Resolution of Evolution and Phylogeny of the Moths Inferred from Nineteen Mitochondrial Genomes. Genes (Basel) 2022; 13:genes13091634. [PMID: 36140802 PMCID: PMC9498458 DOI: 10.3390/genes13091634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The vast majority (approximately 90%) of Lepidoptera species belong to moths whose phylogeny has been widely discussed and highly controversial. For the further understanding of phylogenetic relationships of moths, nineteen nearly complete mitochondrial genomes (mitogenomes) of moths involved in six major lineages were sequenced and characterized. These mitogenomes ranged from 15,177 bp (Cyclidia fractifasciata) to 15,749 bp (Ophthalmitis albosignaria) in length, comprising of the core 37 mitochondrial genes (13 protein-coding genes (PCGs) + 22 tRNAs + two rRNAs) and an incomplete control region. The order and orientation of genes showed the same pattern and the gene order of trnM-trnI-trnQ showed a typical rearrangement of Lepidoptera compared with the ancestral order of trnI-trnQ-trnM. Among these 13 PCGs, ATP8 exhibited the fastest evolutionary rate, and Drepanidae showed the highest average evolutionary rate among six families involved in 66 species. The phylogenetic analyses based on the dataset of 13 PCGs suggested the relationship of (Notodontidae + (Noctuidae + Erebidae)) + (Geometridae + (Sphingidae + Drepanidae)), which suggested a slightly different pattern from previous studies. Most groups were well defined in the subfamily level except Erebidae, which was not fully consistent across bayesian and maximum likelihood methods. Several formerly unassigned tribes of Geometridae were suggested based on mitogenome sequences despite a not very strong support in partial nodes. The study of mitogenomes of these moths can provide fundamental information of mitogenome architecture, and the phylogenetic position of moths, and contributes to further phylogeographical studies and the biological control of pests.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610064, China
- Collaborative Innovation Center for Ecological Animal Husbandry of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610064, China
- Correspondence: (N.Y.); (C.Z.)
| | - Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (N.Y.); (C.Z.)
| |
Collapse
|
16
|
Shang J, Xu W, Huang X, Zhang D, Yan L, Pape T. Comparative Mitogenomics of Flesh Flies: Implications for Phylogeny. INSECTS 2022; 13:insects13080718. [PMID: 36005343 PMCID: PMC9408989 DOI: 10.3390/insects13080718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Flesh flies (Diptera: Sarcophagidae) represent a rapid radiation belonging to the Calyptratae. With more than 3000 known species, they are extraordinarily diverse in terms of their breeding habits and are therefore of particular importance in human and veterinary medicine, forensics, and ecology. To better comprehend the phylogenetic relationships and evolutionary characteristics of the Sarcophagidae, we sequenced the complete mitochondrial genomes of five species of flesh flies and performed mitogenomic comparisons amongst the three subfamilies. The mitochondrial genomes match the hypothetical condition of the insect ancestor in terms of gene content and gene arrangement. The evolutionary rates of the subfamilies of Sarcophagidae differ significantly, with Miltogramminae exhibiting a higher rate than the other two subfamilies. The monophyly of the Sarcophagidae and each subfamily is strongly supported by phylogenetic analysis, with the subfamily-level relationship inferred as (Sarcophaginae, (Miltogramminae, Paramacronychiinae)). This study suggests that phylogenetic analysis based on mitochondrial genomes may not be appropriate for rapidly evolving groups such as Miltogramminae and that the third-codon positions could play a considerable role in reconstructing the phylogeny of Sarcophagidae. The protein-coding genes ND2 and ND6 have the potential to be employed as DNA markers for species identification and delimitation in flesh flies.
Collapse
Affiliation(s)
- Jin Shang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wentian Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiaofang Huang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.Z.); (L.Y.)
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.Z.); (L.Y.)
| | - Thomas Pape
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Xu Y, Dong Y, Cheng W, Wu K, Gao H, Liu L, Xu L, Gong B. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Diospyros oleifera, the first representative from the family Ebenaceae. Heliyon 2022; 8:e09870. [PMID: 35847622 PMCID: PMC9283892 DOI: 10.1016/j.heliyon.2022.e09870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 01/30/2023] Open
Abstract
Plant mitochondrial genomes are a valuable source of genetic information for a better understanding of phylogenetic relationships. However, no mitochondrial genome of any species in Ebenaceae has been reported. In this study, we reported the first mitochondrial genome of an Ebenaceae model plant Diospyros oleifera. The mitogenome was 493,958 bp in length, contained 39 protein-coding genes, 27 transfer RNA genes, and 3 ribosomal RNA genes. The rps2 and rps11 genes were missing in the D. oleifera mt genome, while the rps10 gene was identified. The length of the repetitive sequence in the D. oleifera mt genome was 31 kb, accounting for 6.33%. A clear bias in RNA-editing sites were found in the D. oleifera mt genome. We also detected 28 chloroplast-derived fragments significantly associated with D. oleifera mt genes, indicating intracellular tRNA genes transferred frequently from chloroplasts to mitochondria in D. oleifera. Phylogenetic analysis based on the mt genomes of D. oleifera and 27 other taxa reflected the exact evolutionary and taxonomic status of D. oleifera. Ka/Ks analysis revealed that 95.16% of the protein-coding genes in the D. oleifera mt genome had undergone negative selections. But, the rearrangement of mitochondrial genes has been widely occur among D. oleifera and these observed species. These results will lay the foundation for identifying further evolutionary relationships within Ebenaceae.
Collapse
Affiliation(s)
- Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yi Dong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Wenqiang Cheng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Kaiyun Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Haidong Gao
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Liu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Xu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
18
|
Ma Z, Li R, Zhu B, Zheng X, Zhou C. Comparative Mitogenome Analyses of Subgenera and Species Groups in Epeorus (Ephemeroptera: Heptageniidae). INSECTS 2022; 13:insects13070599. [PMID: 35886775 PMCID: PMC9317806 DOI: 10.3390/insects13070599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary As one of the most species-rich genera of Ephemeroptera, Epeorus Eaton, 1881, was found to be widely distributed in Holarctic and Oriental regions, and nine subgenera have been reported. Previous phylogenetic studies of Epeorus were mainly focused on morphological characters or several gene fragments. Here, 15 mitogenomes of Epeorus are sequenced and the comparative mitogenome analysis of six subgenera is performed. The gene rearrangement of trnI-trnM-trnQ-NCR-ND2 was first found in the genus. In addition, differences in genetic composition and codon usage between the species with this kind of rearrangement and other Epeorus species were observed. Phylogenetic analyses show that three subgenera, Proepeorus, Belovius and Iron, are not monophyletic groups, and our results imply that gill structures are not always appropriate for the classification of subgenera in Epeorus. Abstract Epeorus Eaton, 1881 is a diverse mayfly genus in Heptageniidae comprising more than 100 species which are further divided into nine subgenera and several species groups. However, the classification and the phylogenetic relationships among them are still uncertain. Here, 15 complete mitochondrial genomes of Epeorus were sequenced and compared together with six available ones of same genus in the NCBI database. Based on morphological classification, the 21 mitogenomes were classified into six subgenera (Proepeorus, Epeorus s.str., Belovius, Iron, Caucasiron and Siniron) and four species groups (G1, G2, montanus and longimanus). Among all analyzed mitogenomes, the gene rearrangement of trnI-trnM-trnQ-NCR-ND2 was first found occurring in three species of group G1, whereas the gene block trnI-trnM-trnQ-trnM-ND2 was observed in all other mitogenomes of Epeorus. Furthermore, the genetic composition and codon usage of species in group G1 were also significantly different from all other Epeorus species, except group longimanus. The intergenic spacer between trnA and trnR, which has the stem-loop secondary structure, occurred in all 21 mitogenomes, and the sequences of stems and loops were conserved within species groups. Furthermore, the phylogenetic analyses strongly support the monophyly of all species groups, although three of six recognized subgenera Proepeorus, Belovius, and Iron, were shown as the non-monophyletic groups.
Collapse
Affiliation(s)
- Zhenxing Ma
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (R.L.); (X.Z.)
| | - Ran Li
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (R.L.); (X.Z.)
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Binqing Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment/State Environmental Protection Scientific Observation, Nanjing 210042, China;
| | - Xuhongyi Zheng
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (R.L.); (X.Z.)
| | - Changfa Zhou
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (R.L.); (X.Z.)
- Correspondence:
| |
Collapse
|
19
|
Lin X, Liu Z, Yan L, Duan X, Bu W, Wang X, Zheng C. Mitogenomes provide new insights of evolutionary history of Boreheptagyiini and Diamesini (Diptera: Chironomidae: Diamesinae). Ecol Evol 2022; 12:e8957. [PMID: 35646319 PMCID: PMC9130564 DOI: 10.1002/ece3.8957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 01/11/2023] Open
Abstract
Mitogenomes have been widely used for phylogenetic reconstruction of various Dipteran groups, but specifically for chironomid, they have not been carried out to resolve the relationships. Diamesinae (Diptera: Chironomidae) are important bioindicators for freshwater ecosystem monitoring, but its evolutionary history remains uncertain for lack of information. Here, coupled with one previously published and 30 new mitogenomes of Diamesinae, we carried out comparative mitogenomic analysis and phylogenetic analysis. Mitogenomes of Diamesinae were conserved in structure, and all genes arranged in the same order as the ancestral insect mitogenome. All protein-coding genes in Diamesinae were under stronger purifying selection than those of other nonbiting midge species, which may exhibit signs of adaptation to life at cold living conditions. Phylogenetic analyses strongly supported the monophyly of Diamesinae, with Boreheptagyiini deeply nested within Diamesini. In addition, phylogenetic relationship of selected six genera was resolved, except Sympotthastia remained unstable. Our study revealed that the mitogenomes of Diamesinae are highly conserved, and they are practically useful for phylogenetic inference.
Collapse
Affiliation(s)
- Xiao‐Long Lin
- College of Life SciencesNankai UniversityTianjinChina
| | - Zheng Liu
- Geological Museum of ChinaBeijingChina
| | - Li‐Ping Yan
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Xin Duan
- Department of Plant ProtectionCollege of Horticulture and LandscapeTianjin Agricultural UniversityTianjinChina
| | - Wen‐Jun Bu
- College of Life SciencesNankai UniversityTianjinChina
| | - Xin‐Hua Wang
- College of Life SciencesNankai UniversityTianjinChina
| | | |
Collapse
|
20
|
Lin X, Zhao Y, Yan L, Liu W, Bu W, Wang X, Zheng C. Mitogenomes provide new insights into the evolutionary history of Prodiamesinae (Diptera: Chironomidae). ZOOL SCR 2021. [DOI: 10.1111/zsc.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiao‐Long Lin
- College of Life Sciences Nankai University Tianjin China
| | - Yan‐Min Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Li‐Ping Yan
- School of Ecology and Nature Conservation Beijing Forestry University Beijing China
| | - Wen‐Bin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity Tianjin Normal University Tianjin China
| | - Wen‐Jun Bu
- College of Life Sciences Nankai University Tianjin China
| | - Xin‐Hua Wang
- College of Life Sciences Nankai University Tianjin China
| | | |
Collapse
|
21
|
First mitogenome of moniezia sichuanensis from forest musk deer with comparative analyses within cyclophyllidea. Vet Parasitol 2021; 299:109575. [PMID: 34521041 DOI: 10.1016/j.vetpar.2021.109575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022]
Abstract
We characterised, for the first time, the whole mitogenome of a unique tapeworm, Moniezia sichuanensis (Cyclophyllidea, Anoplocephalidae) of forest musk deer (Moschus berezovskii). The total length of the circular mitogenome was 13,652 bp. It consisted of 12 protein-coding genes (PCGs), 22 transfer RNA genes, and two ribosomal RNA genes, which are typical of the mitogenomes of Moniezia. By comparing the available mitogenomes of PCGs for Cyclophyllidea in GenBank, nad6 and cox1 showed the highest and lowest evolutionary rates, respectively, and cox2 could be used as a potential DNA barcoding marker. The phylogenetic analyses of Cyclophyllidea confirmed the monophyly of the genus Moniezia and the family Anoplocephalidae; they then formed a clade with species of Hymenolepididae. Moreover, two novel gene arrangements of Cyclophyllidea were observed.
Collapse
|
22
|
Xu S, Wu Y, Liu Y, Zhao P, Chen Z, Song F, Li H, Cai W. Comparative Mitogenomics and Phylogenetic Analyses of Pentatomoidea (Hemiptera: Heteroptera). Genes (Basel) 2021; 12:1306. [PMID: 34573288 PMCID: PMC8471585 DOI: 10.3390/genes12091306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Pentatomoidea is the largest superfamily of Pentatomomorpha; however, the phylogenetic relationships among pentatomoid families have been debated for a long time. In the present study, we gathered the mitogenomes of 55 species from eight common families (Acanthosomatidae, Cydnidae, Dinidoridae, Scutelleridae, Tessaratomidae, Plataspidae, Urostylididae and Pentatomidae), including 20 newly sequenced mitogenomes, and conducted comparative mitogenomic studies with an emphasis on the structures of non-coding regions. Heterogeneity in the base composition, and contrasting evolutionary rates were encountered among the mitogenomes in Pentatomoidea, especially in Urostylididae, which may lead to unstable phylogenetic topologies. When the family Urostylididae is excluded in taxa sampling or the third codon positions of protein coding genes are removed, phylogenetic analyses under site-homogenous models could provide more stable tree topologies. However, the relationships between families remained the same in all PhyloBayes analyses under the site-heterogeneous mixture model CAT + GTR with different datasets and were recovered as (Cydnidae + (((Tessaratomidae + Dinidoridae) + (Plataspidae + Scutelleridae)) + ((Acanthosomatidae + Urostylididae) + Pentatomidae)))). Our study showed that data optimizing strategies after heterogeneity assessments based on denser sampling and the use of site-heterogeneous mixture models are essential for further analysis of the phylogenetic relationships of Pentatomoidea.
Collapse
Affiliation(s)
- Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| | - Yunfei Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| | - Yingqi Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| | - Ping Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Ministry of Education) and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China;
| | - Zhuo Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.X.); (Y.W.); (Y.L.); (Z.C.); (F.S.); (H.L.)
| |
Collapse
|