1
|
Cui Z, Wang Y, Zhang L, Qi H. Zwitterionic Peptides: From Mechanism, Design Strategies to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56497-56518. [PMID: 39393043 DOI: 10.1021/acsami.4c08891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Zwitterionic peptides, as a type of peptide composed of charged residues, are electrically neutral, which combine the advantages of zwitterionic materials and biological peptides, exhibiting hydrophilicity and programmable properties. As attractive candidates for resisting nonspecific adsorption of biomacromolecules and microorganisms, zwitterionic peptides have been applied in materials science, biomedicine, and biochemistry over the past decade. In this review, the development of zwitterionic peptides has been systematically outlined and analyzed, including their mechanisms, structure-function relationships, and design strategies. Furthermore, this review emphasizes and discusses their recent applications for developing functional coatings, biosensors, drug delivery systems, and engineering proteins. Finally, future research perspectives and challenges of zwitterionic peptides are also prospected and discussed. This review is intended to provide clarity and insight into the design and applications of zwitterionic peptides.
Collapse
Affiliation(s)
- Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Yang X, Ma L, Lu K, Zhao D. Mechanism of Peptide Self-assembly and Its Study in Biomedicine. Protein J 2024; 43:464-476. [PMID: 38676873 DOI: 10.1007/s10930-024-10200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Chen H, Zhang Q. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opin Drug Deliv 2024; 21:1-12. [PMID: 38116624 DOI: 10.1080/17425247.2023.2297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.
Collapse
Affiliation(s)
- Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Shen Z, Sun Y, Zhu G, Xu G, Yu Z, Lu H, Chen Y. Molecular Insights into the Improved Bioactivity of Interferon Conjugates Attached to a Helical Polyglutamate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6539-6547. [PMID: 37127842 DOI: 10.1021/acs.langmuir.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Attaching polymers, especially polyethylene glycol (PEG), to protein drugs has emerged as a successful strategy to prolong circulation time in the bloodstream. The hypothesis is that the flexible chain wobbles on the protein's surface, thus resisting potential nonspecific adsorption. Such a theoretical framework may be challenged when a helical polyglutamate is used to conjugate with target proteins. In this study, we investigated the structure-activity relationships of polyglutamate-interferon conjugates P(EG3Glu)-IFN using molecular simulations. Our results show that the local crowding effect induced by oligoethylene glycols (i.e., EG3) is the primary driving force for helix formation in P(EG3Glu), and its helicity can be effectively increased by reducing the free volume of the two termini. Furthermore, it was found that the steric hindrance induced by IFN is not conductive to the helicity of P(EG3Glu) but contributes to its dominant orientation relative to interferon. The orientation of IFN relative to the helical P(EG3Glu) can help to protect the protein drug from neutralizing antibodies while maintaining its bioactivity. These findings suggest that the helical structure and its orientation are critical factors to consider when updating the theoretical framework for protein-polymer conjugates.
Collapse
Affiliation(s)
- Zhuanglin Shen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Yiming Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guoliang Zhu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Zhenqiang Yu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
5
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
6
|
Liu Y, Zhu G, Shen Z, Chen Y. Sequence Effect of Peptide-Based Materials on Delivering Interferon-α (IFN-α): A Molecular Dynamic Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:680-688. [PMID: 34986309 DOI: 10.1021/acs.langmuir.1c02515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide-based biomaterials exhibit great potentials in developing drug delivery platforms due to their biocompatibility and biodegradability beyond poly(ethylene glycol). How different amino acids in peptides used for delivery play their roles is still unclear at the microscopic level. This work compared the assembly behaviors of a series of peptides around interferon-α (IFN-α). Through all-atom molecular simulations, the sequence effect of peptides on delivering interferon-α was quantitively characterized. The hydrophobic elastin-like peptide (VPGAG)n preferred to self-aggregate into dense clusters, rather than encapsulate IFN-α. The hydrophilic zwitterionic peptides with repeating unit "KE" tended to phase-separate from IFN-α in the mixture. In contrast, peptides with a hybrid sequence, i.e., (VPKEG)n, exhibited the highest contact preference, and the formed protective shell endowed IFN-α with better thermal stability and stealth property and achieved a subtle balance between protecting IFN-α and subsequent releasing. Further energy decomposition analysis revealed that the positively charged Lys contributed most to the binding affinity while the negatively charged Glu contributed most to the hydrophilic property of peptide-based materials. In summary, this article reveals why peptides composed of repeating hydrophobic and charged residues could be a potential choice for delivering therapeutic proteins in the form of solution.
Collapse
Affiliation(s)
- Yuting Liu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Guoliang Zhu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhuanglin Shen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
7
|
Qiao Q, Cai L, Shao Q. Molecular Simulations of Zwitterlation-induced Conformation and Dynamics Variation of Glucagon-like Peptide-1 and Insulin. J Mater Chem B 2022; 10:2490-2496. [DOI: 10.1039/d1tb02561a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic materials have shown their ability to improve the circulation time and stability of proteins. Zwitterionic peptides present unique potential because genetic technology can fuse them to any wild-type protein....
Collapse
|