1
|
Simić M, Nikolić V, Sarić B, Milovanović D, Kostadinović M, Žilić S. Changes in Nutritional and Techno-Functional Properties of Whole Grain Maize Flours Induced by Dry-Heat Treatment. Foods 2024; 13:3314. [PMID: 39456378 PMCID: PMC11507147 DOI: 10.3390/foods13203314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The present study was carried out to demonstrate the effects of dry heat treatment (DHT) at different temperatures (100, 125, 135, 150, and 165 °C) on the nutritional and techno-functional properties of white, blue, and yellow whole grain maize flour. Results showed that DHT increased the insoluble dietary fiber and free phenolic compounds of the investigated maize flours, while the bound phenolic compounds, anthocyanins, and pasting properties decreased with the rising of the applied temperature. The application of DHT caused the most notable changes regarding the amount of dietary fiber. Content of NDF (neutral detergent fiber) ranged from 11.48% to 44.35%, 14.19% to 37.84%, and 15.15% to 45.86% in white, yellow, and blue maize samples, respectively. Furthermore, at the highest temperature applied in the DHT (165 °C) the content of soluble free phenolic compounds in yellow and blue maize flour samples was 1.2- and 1.4-fold higher compared to control flour samples. DHT significantly improved the functionality of maize flour in terms of water absorption capacity, water solubility, and digestibility, thus it can be effectively used to make up for the poor functionality of raw maize flour. This study shows that DHT at moderate temperatures (125-135 °C), could be a viable solution for the pre-processing of maize flour to enhance the potential for its utilization in the food industry.
Collapse
Affiliation(s)
- Marijana Simić
- Department of Food Technology and Biochemistry, Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11000 Belgrade, Serbia; (V.N.); (B.S.); (D.M.); (S.Ž.)
| | - Valentina Nikolić
- Department of Food Technology and Biochemistry, Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11000 Belgrade, Serbia; (V.N.); (B.S.); (D.M.); (S.Ž.)
| | - Beka Sarić
- Department of Food Technology and Biochemistry, Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11000 Belgrade, Serbia; (V.N.); (B.S.); (D.M.); (S.Ž.)
| | - Danka Milovanović
- Department of Food Technology and Biochemistry, Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11000 Belgrade, Serbia; (V.N.); (B.S.); (D.M.); (S.Ž.)
| | - Marija Kostadinović
- Laboratory for Molecular Genetics and Physiology, Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11000 Belgrade, Serbia;
| | - Slađana Žilić
- Department of Food Technology and Biochemistry, Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11000 Belgrade, Serbia; (V.N.); (B.S.); (D.M.); (S.Ž.)
| |
Collapse
|
2
|
Kaushik A, Saxena DC, Singh S. Exploring the potential of browntop millet (Urochloa ramosa) starch: Physicochemical, morphological, thermal and rheological properties across four cultivars. Int J Biol Macromol 2024; 278:134923. [PMID: 39217034 DOI: 10.1016/j.ijbiomac.2024.134923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive research explores the starch isolated from four browntop millet cultivars to determine physicochemical, thermal, morphological, powder flow, pasting, and rheological properties. Significant variations (p ≤ 0.05) were observed among the cultivars. Aerated bulk density (ABD) and Tapped bulk density (TBD) values ranged from 0.476 g/mL (BTM4) to 0.591 g/mL (BTM1), and 0.591 g/mL (BTM1) to 0.476 g/mL (BTM4). Amylose content varied from 22.55% (BTM4) to 25.86% (BTM3), influencing gelling strength and film-forming properties. Water absorption capacity ranged from 1.78 g/g to 1.92 g/g, while oil absorption capacity varied from 2.20 g/g to 2.47 g/g. DSC analysis showed gelatinization temperatures (Tp, and Tc) ranging from 85.44-91.61 °C, and 147.08-154.21 °C, respectively. X-ray diffraction (XRD) patterns revealed A-type crystalline patterns, with relative crystallinity ranging from 22.66% (BTM3) to 27.81% (BTM2). Pasting properties exhibited variations among cultivars, with peak viscosity ranging from 2480 c P to 3119 cP, and pasting temperature from 77.50 °C to 82.35 °C. Rheological analysis indicated shear-thinning behavior. The findings offer insights into the diverse properties of browntop millet starch, contributing to its potential applications in various industries and potentially guiding future studies on browntop millet starch modifications and novel utilization.
Collapse
Affiliation(s)
- Amisha Kaushik
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - Dharmesh Chandra Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India.
| |
Collapse
|
3
|
Mahajan P, Bera MB, Panesar PS, Foujdar R. Thermodynamic and network characteristics of optimized lysine-modified kutki (Panicum sumatrense) millet starch hydrogels. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1743-1757. [PMID: 39049916 PMCID: PMC11263305 DOI: 10.1007/s13197-024-05953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 07/27/2024]
Abstract
Three-dimensional polymeric network of hydrogels avoids its dissolution into the aqueous region. Hydrogels must have strong structural integrity to be used for drug/nutraceutical delivery. A three factor-three-level Box-Behnken design was used to understand the effects of starch concentration, NaCl, and pH on the textural and structural integrity of Lysine modified kutki millet starch hydrogels. Various kinetic models were fitted to the time-course measurement of shrinkage behavior of both conventionally (CDHG) and freeze-dried (FDHG) hydrogel. Increasing the swelling temperature (5-50 °C) showed values of higher molecular weight of polymer chains between neighboring crosslinks ( M c ) ¯ (g/mol) for FDHG (9539.59-56,769.72) than CDHG (1096.28-11,420.48). Similarly, mesh size (ξ) was more for FDHG (38.63-109.53 Ȧ) than CDHG (10.97-42.74 Ȧ). However, other network parameters such as polymer volume fraction ( ∅ p ) was lower for FDHG (0.229-0.146) than CDHG (0.3882-0.222). These values suggest low swelling power of CDHG compared to FDHG. Thermodynamically, FDHG took less energy to swell than CDHG. The study showed that FDHG has better properties than CDHG and could be employed in nutraceutical delivery. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05953-x.
Collapse
Affiliation(s)
- Palak Mahajan
- Present Address: Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Manab Bandhu Bera
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab 148106 India
| | - Parmjit Singh Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab 148106 India
| | - Rimpi Foujdar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab 148106 India
| |
Collapse
|
4
|
Li Q, Li D, Guo S, Yu X. Genome-Wide Identification of microRNAs Associated with Starch Biosynthesis and Endosperm Development in Foxtail Millet. Int J Mol Sci 2024; 25:9282. [PMID: 39273232 PMCID: PMC11395324 DOI: 10.3390/ijms25179282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Foxtail millet is one of the oldest crops, and its endosperm contains up to 70% of starch. Grain filling is an important starch accumulation process associated with foxtail millet yield and quality. However, the molecular mechanisms of grain filling in foxtail millet are relatively unclear. Here, we investigate the genes and regulated miRNAs associated with starch synthesis and metabolism in foxtail millet using high-throughput small RNA, mRNA and degradome sequencing. The regulation of starch synthesis and quality is carried out mainly at the 15 DAA to 35 DAA stage during grain filling. The DEGs between waxy and non-waxy foxtail millet were significant, especially for GBSS. Additionally, ptc-miR169i_R+2_1ss21GA, fve-miR396e_L-1R+1, mtr-miR162 and PC-5p-221_23413 regulate the expression of genes associated with the starch synthesis pathway in foxtail millet. This study provides new insights into the molecular mechanisms of starch synthesis and quality formation in foxtail millet.
Collapse
Affiliation(s)
- Qiang Li
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010000, China
- Inner Mongolia Autonomous Region College Crop Germplasm Resources Protection and Utilization Engineering Research Center, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Shihua Guo
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010000, China
- Inner Mongolia Autonomous Region College Crop Germplasm Resources Protection and Utilization Engineering Research Center, Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Xiaofang Yu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010000, China
- Inner Mongolia Autonomous Region College Crop Germplasm Resources Protection and Utilization Engineering Research Center, Inner Mongolia Agricultural University, Hohhot 010000, China
| |
Collapse
|
5
|
Dnyaneshwar Patil N, Bains A, Kaur S, Yadav R, Ali N, Patil S, Goksen G, Chawla P. Influence of dual succinylation and ultrasonication modification on the amino acid content, structural and functional properties of Chickpea (Cicer arietinum L.) protein concentrate. Food Chem 2024; 445:138671. [PMID: 38367556 DOI: 10.1016/j.foodchem.2024.138671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian Road, Shenzhen 510038, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara Punjab 144411, India.
| |
Collapse
|
6
|
Kaur P, Annapure US. Rheological and gelling properties of atmospheric pressure cold plasma treated finger millet (Eleusine coracana) starch. Food Res Int 2024; 187:114418. [PMID: 38763668 DOI: 10.1016/j.foodres.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Interest in exploring alternative starch sources like finger millet is rising due to wide starch applications. However, native starch often lacks desired qualities, including rheological properties. Modification is thus necessary for specific end uses. Plasma treatment as a greener and sustainable method for starch modification was therefore, studied for its ability to impact rheological properties of finger millet starch (FMS). Considerable changes in the rheological properties on FMS was noted, a significant decrease and increase (p < 0.05) in the peak viscosity (from 3.35 to 0.553 Pa.s) and paste clarity respectively was observed, indicating occurrence of depolymerization. However, intermediate plasma-treated samples (200 V) observed a decrease in paste clarity attributed to aggregate formation and cross-linking. Cross-linking was also confirmed by findings of frequency sweep where a continuous decrease in G' values of plasma treated FMS gel was interrupted by sudden increase. Despite depolymerization causing alteration of rheological behaviour such as decrease in shear thinning properties, gel strength observed a contradictory increase. This was attributed to incorporation of functional group and absence of shear responsible for network formation giving higher gel strength to FMS gels. This is elaborated in detail in the study. The study thus concluded that cold plasma significantly impacted all the rheological properties of the FMS and hence can prove to be beneficial for modification of starch rheological parameters.
Collapse
Affiliation(s)
- Parinder Kaur
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Uday S Annapure
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
7
|
Huang Y, Hu W, Xu K, Dan R, Tan S, Shu Z, Li X, Liu H, Fan C, Xing M, Yang S. Plant mucus-derived microgels: Blood-triggered gelation and strong hemostatic adhesion. Biomaterials 2024; 307:122535. [PMID: 38518590 DOI: 10.1016/j.biomaterials.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Arrest of bleeding usually applies clotting agents to trigger coagulation procedures or adhesives to interrupt blood flow through sealing the vessel; however, the efficiency is compromised. Here, we propose a concept of integration of hemostasis and adhesion via yam mucus's microgels. The mucus microgels exhibit attractive attributes of hydrogel with uniform size and shape. Their shear-thinning, self-healing and strong adhesion make them feasible as injectable bioadhesion. Exceptionally, the blood can trigger the microgels' gelation with the outcome of super extensibility, which leads to the microgels a strong hemostatic agent. We also found a tight gel adhesive layer formed upon microgels' contacting the blood on the tissue, where there is the coagulation factor XIII triggered to form a dense three-dimensional fibrin meshwork. The generated structures show that the microgels look like hard balls in the dispersed phase into the blood-produced fibrin mesh of a soft net phase. Both phases work together for a super-extension gel. We demonstrated the microgels' fast adhesion and hemostasis in the livers and hearts of rabbits and mini pigs. The microgels also promoted wound healing with good biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg MB, R3T 2N2, Manitoba, Canada
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Shali Tan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Xin Li
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Hangzong Liu
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China; Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg MB, R3T 2N2, Manitoba, Canada.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, NO.183, Xinqiao Street, Chongqing, 400037, China; Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, 400037, China.
| |
Collapse
|
8
|
Zhang Y, Chen Z, Tian H, Wu Y, Kong Y, Wang X, Sui N. Alternative Splicing Plays a Crucial Role in the Salt Tolerance of Foxtail Millet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10814-10827. [PMID: 38710027 DOI: 10.1021/acs.jafc.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.
Collapse
Affiliation(s)
- Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No.2 Kangyang Road, Dongying 257000, China
| | - Haowei Tian
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanmei Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ying Kong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
9
|
Kaur P, Annapure US. Understanding the atmospheric cold plasma-induced modification of finger millet (Eleusine coracana) starch and its related mechanisms. Int J Biol Macromol 2024; 268:131615. [PMID: 38631580 DOI: 10.1016/j.ijbiomac.2024.131615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
This research was conducted to evaluate the effects of cold plasma (CP) on finger millet starch (FMS). FMS was exposed to partially ionized gas at varying voltages (170, 200, and 230 Volt) for varied time (10, 20, and 30 mins). The impact of treatment was studied using physico-chemical, and functional properties, and the mechanisms of starch modification occurring were stated. A significant reduction in the degree of polymerization was noticed based on parameters like reducing sugar, amylose content, solubility, and molecular weight. However, in certain voltage and time combinations, crosslinking was also confirmed by analysis such as XRD, FTIR, DSC, etc. The properties of starch were altered such as remarkable increase in water solubility by 6.7 times for highest voltage and longest time (230 V/30 min) was registered. NMR data suggested valuable findings- oxidation of OH group at C6 position of starch led to formation of carbonyl group followed by carboxyl group. NMR also showed a decrease in OH protons confirming crosslinking and hence all these analyses helped to conclude findings about the quality changes using CP. It was observed that the highest voltage and considerably longer exposure time of 20 and 30 min induced significant changes in the FMS.
Collapse
Affiliation(s)
- Parinder Kaur
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Uday S Annapure
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
10
|
Gupta R, Gaur S. Investigating the effect of natural fermentation in modifying the physico-functional, structural and thermal characteristics of pearl and finger millet starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2440-2448. [PMID: 37961840 DOI: 10.1002/jsfa.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND In recent years, millets are often considered an emerging crop for sustainable agriculture. Therefore, millets can be exploited as an alternative source of starch which has many applications ranging from food, packaging, bioplastics, and others. However, starch is seldom used in its native form and is more often modified to enhance its functional properties. In literature, many traditional millet-based food recipes often incorporate a fermentation step before cooking. Therefore, using this traditional knowledge fermentation has been explored as a potential method for modifying millet starch. RESULTS Pearl millet (PM) and finger millet (FM) flour were allowed to naturally ferment for 24 h followed by starch extraction. Compared to native (N) starch, water/oil holding capacity and least gelation concentration of fermented (F) starch decreased with no significant change in swelling power. The solubility, paste clarity and in vitro digestibility of starch were significantly affected by fermentation. X-ray diffraction (XRD) data indicates that after fermentation, crystallinity increased while the A-type crystalline structure remained intact. Fourier-transform infrared (FTIR) spectra showed no deletion or addition of any new functional groups. Thermal characterization by differential scanning calorimetry (DSC) showed that the enthalpy of gelatinization of PM starch decreased while that of FM starch increased after fermentation. CONCLUSION The results indicate that 24 h natural fermentation had a significant impact on functional properties of starch without altering the structural architecture of starch granules. Therefore, fermentation can be further explored as a low-cost alternative for starch modification. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rishibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
11
|
Gebre BA, Zhang C, Li Z, Sui Z, Corke H. Impact of starch chain length distributions on physicochemical properties and digestibility of starches. Food Chem 2024; 435:137641. [PMID: 37804724 DOI: 10.1016/j.foodchem.2023.137641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Changing starch structure at different levels is a promising approach to promote desirable metabolic responses. Chain length distribution (CLD) is among the starch structural characteristics having a potential to determine properties of starch-based products. Therefore, the objective of the current review is to summarize recent findings on CLD and its impact on physicochemical properties and digestion. Investigations undertaken to enhance understanding of starch structure have shown clearly that CLD is a significant determining factor in modulating starch digestibility. Enzymatic modifications and processing treatments alter the CLD of starch, which in turn affects the rate of digestion, but the underlying molecular mechanisms have yet to be fully elucidated. Even though advances have been made in manipulating CLD using different methods and to correlate the changes with various functional properties, in general the area needs further investigations to open new awareness for enhancing healthiness of starchy foods.
Collapse
Affiliation(s)
- Bilatu Agza Gebre
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijun Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320000, Israel.
| |
Collapse
|
12
|
Sherin AJ, Sunil CK, Chidanand DV, Venkatachalapathy N. Structural, physicochemical and functional properties of high-pressure modified white finger millet starch. Int J Biol Macromol 2024; 261:129919. [PMID: 38309404 DOI: 10.1016/j.ijbiomac.2024.129919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
The effect of high-pressure processing (HPP) modification (200, 400, and 600 MPa for 10 min) on the physico-chemical, functional, structural, and rheological properties of white finger millet starch (WFMS) was studied. Measured amylose content, water, and oil absorption capacity, alkaline water retention, and pasting temperature increased significantly with the intensity of pressure. All color parameters (L, a, b values, and ΔC) were affected by HPP treatment, and paste clarity of modified starch decreased significantly with an increase in storage time. The samples' least gelation concentration (LGC) is in the range of 8-14 %. An increasing solubility and swelling power are noted, further intensifying at the elevated temperature (90 °C). The structural changes of WFMS were characterized by XRD, SEM, and FTIR spectroscopy. Starch modified at 600 MPa showed a similar pattern as 'B'-type crystalline, and the surfaces of starch deformed because of the gelatinization. Applied pressure of 600 MPa affected the FTIR characteristic bands at 3330, 2358, and 997 cm-1, indicating a lower crystallinity of the HPP-600 modified sample. According to DSC analysis, even at 600 MPa, WFMS is only partially gelatinized. This work provides insights for producing modified WFM starches by a novel physical modification method.
Collapse
Affiliation(s)
- A Jamna Sherin
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur, India
| | - C K Sunil
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur, India; Centre of Excellence for Grain Sciences, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur, India.
| | - D V Chidanand
- Industry Academia Cell, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur, India
| | - N Venkatachalapathy
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur, India; Centre of Excellence for Grain Sciences, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Thanjavur, India
| |
Collapse
|
13
|
Gabriele M, Cavallero A, Tomassi E, Arouna N, Árvay J, Longo V, Pucci L. Assessment of Sourdough Fermentation Impact on the Antioxidant and Anti-Inflammatory Potential of Pearl Millet from Burkina Faso. Foods 2024; 13:704. [PMID: 38472817 DOI: 10.3390/foods13050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Millet, a gluten-free cereal, has received attention for its environmental friendliness and higher protein content than other grains. It represents a staple food in many African countries, where fermentation is traditionally used for preserving food products and preparing different cereal-based products. This study aimed to assess the impact of sourdough fermentation on bioactive compounds and antioxidant and anti-inflammatory properties of pearl millet from Burkina Faso. Phenolic compounds were investigated spectrophotometrically and by HPLC-DAD. The antioxidant activity of unfermented (MF) and fermented (FeMF) millet was evaluated in vitro by spectrophotometric and fluorometric assays and ex vivo on oxidized human erythrocytes for hemolysis inhibition. Finally, the potential anti-inflammatory effect of FeMF and MF was evaluated on human adenocarcinoma cell line (HT-29) exposed to TNF-α inflammatory stimulus. Results revealed significantly higher levels of polyphenols, flavonoids, and in vitro antioxidant activity following millet fermentation. Notable differences in phenolic composition between FeMF and MF are observed, with fermentation facilitating the release of bioactive compounds such as gallic acid, quercetin, and rutin. A dose-dependent protection against oxidative hemolysis was observed in both FeMF- and MF-pretreated erythrocytes. Similarly, pretreatment with FeMF significantly reduced the levels of inflammatory markers in TNF-α-treated cells, with effects comparable to those of MF. Fermentation with sourdough represents a simple and low-cost method to improve the bioactive compounds content and in vitro antioxidant activity of millet flour with promising nutraceutical potential.
Collapse
Affiliation(s)
- Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Andrea Cavallero
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Nafiou Arouna
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
14
|
Heena, Kumar N, Singh R, Upadhyay A, Giri BS. Application and functional properties of millet starch: Wet milling extraction process and different modification approaches. Heliyon 2024; 10:e25330. [PMID: 38333841 PMCID: PMC10850599 DOI: 10.1016/j.heliyon.2024.e25330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
In the past decade, the demand and interest of consumers have expanded for using plant-based novel starch sources in different food and non-food processing. Therefore, millet-based value-added functional foods are acquired spare attention due to their excellent nutritional, medicinal, and therapeutic properties. Millet is mainly composed of starch (amylose and amylopectin), which is primary component of the millet grain and defines the quality of millet-based food products. Millet contains approximately 70 % starch of the total grain, which can be used as a, ingredient, thickening agent, binding agent, and stabilizer commercially due to its functional attributes. The physical, chemical, and enzymatic methods are used to extract starch from millet and other cereals. Numerous ways, such as non-thermal physical processes, including ultrasonication, HPP (High pressure processing) high-pressure, PEF (Pulsed electric field), and irradiation are used for modification of millet starch and improve functional properties compared to native starch. In the present review, different databases such as Scopus, Google Scholar, Research Gate, Science Direct, Web of Science, and PubMed were used to collect research articles, review articles, book chapters, reports, etc., for detailed study about millet starch, their extraction (wet milling process) and modification methods such as physical, chemical, biological. The impact of different modification approaches on the techno-functional properties of millet starch and their applications in different sectors have also been reviewed. The data and information created and aggregated in this study will give users the necessary knowledge to further utilize millet starch for value addition and new product development.
Collapse
Affiliation(s)
- Heena
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Rakhi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Balendu Shekher Giri
- Sustainability Cluster, Department of Civil Engineering, School of Engineering, University of Petroleum and Energy (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
15
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
16
|
Gebre BA, Xu Z, Ma M, Lakew B, Sui Z, Corke H. Starch molecular structure, physicochemical properties and in vitro digestibility of Ethiopian malt barley varieties. Int J Biol Macromol 2024; 256:128407. [PMID: 38007010 DOI: 10.1016/j.ijbiomac.2023.128407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Characterization of local varietal barley quality diversity can help boost further development of novel value-added utilization of the grain. Therefore, in this study starch was isolated from 11 Ethiopian malting barley varieties to determine starch structural, pasting, thermal and digestibility characteristics, and their inter-relationships. The varieties showed significant differences in all amylopectin chain length fractions, and the A, B1, B2 and B3 chains ranged from 25.4 to 30.1, 47.4-50.1, 14.3-16.0 and 7.8-9.0 %, respectively. The varieties also exhibited significant variation in amylose content, relative crystallinity, absorbance peak ratios, pasting and thermal properties. Moreover, on average about 83 % raw starch of the varieties was classified as slowly digestible and resistant, whereas after gelatinization this was reduced to 9 %. Molecular and crystalline structures were strongly related to pasting properties, thermal characteristics and in vitro digestibility of the starches. The study provides information on some starch quality characteristics and the inter-relationships among the parameters, and might inspire further studies to suggest possible target-based starch modifications, and future novel utilization of barley. More studies are required to investigate the association of starch quality parameters with malting quality attributes.
Collapse
Affiliation(s)
- Bilatu Agza Gebre
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berhane Lakew
- Senior Barley Breeder, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
17
|
Xing B, Yang X, Zou L, Liu J, Liang Y, Li M, Zhang Z, Wang N, Ren G, Zhang L, Qin P. Starch chain-length distributions determine cooked foxtail millet texture and starch physicochemical properties. Carbohydr Polym 2023; 320:121240. [PMID: 37659823 DOI: 10.1016/j.carbpol.2023.121240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
Starch chain-length distributions play an important role in controlling cereal product texture and starch physicochemical properties. Cooked foxtail millet texture and starch physicochemical properties were investigated and correlated with starch chain-length distributions in eight foxtail millet varieties. The average chain lengths of amylopectin and amylose were in the range of DP 24-25 and DP 878-1128, respectively. The percentage of short amylopectin chains (Ap1) was negatively correlated with hardness but positively correlated with adhesiveness and cohesion. Conversely, the amount of amylose intermediate chains was positively correlated with hardness but negatively correlated with adhesiveness and cohesion. Additionally, the amount of amylose long chains was negatively correlated with adhesiveness and chewiness. The relative crystallinity (RC) of starch decreased with reductions in the length of amylopectin short chains in foxtail millet. Pasting properties were mainly influenced by the relative length of amylopectin side chains and the percentage of long amylopectin branches (Ap2). Longer amylopectin long chains resulted in lower gelatinization temperature and enthalpy (ΔH). The amount of starch branched chains had important effects on the gelatinization temperature range (ΔT). These results can provide guidance for breeders and food scientists in the selection of foxtail millet with improved quality properties.
Collapse
Affiliation(s)
- Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengzhuo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nuo Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
18
|
Balli D, Bellumori M, Masoni A, Moretta M, Palchetti E, Bertaccini B, Mulinacci N, Innocenti M. Proso Millet ( Panicum miliaceum L.) as Alternative Source of Starch and Phenolic Compounds: A Study on Twenty-Five Worldwide Accessions. Molecules 2023; 28:6339. [PMID: 37687168 PMCID: PMC10489065 DOI: 10.3390/molecules28176339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Proso millet has been proposed as an effective anti-diabetic food thanks to the combined action of polyphenols and starch. This study aimed to characterize the chemical composition of twenty-five accessions, in order to enhance this cereal as an alternative to available starch for food applications or to propose new food ingredients with health benefits. Proso millet contained a high percentage of starch, reaching values of 58.51%. The amylose content showed high variability, with values ranging from 1.36 to 42.70%, and significantly higher values were recorded for the white accessions than for the colored ones. High-resistant starch content (13.41-26.07%) was also found. The HPLC-MS analysis showed the same phenolic pattern in all the samples. Cinnamic acids are the most abundant compounds and significant differences in their total content were found (0.69 to 1.35 mg/g DW), while flavonoids were only detected in trace amounts. Statistical results showed significantly higher antiradical activity in the colored accessions than in the white ones.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| | - Maria Bellumori
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| | - Alberto Masoni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; (A.M.); (M.M.); (E.P.)
| | - Michele Moretta
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; (A.M.); (M.M.); (E.P.)
| | - Enrico Palchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; (A.M.); (M.M.); (E.P.)
| | - Bruno Bertaccini
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Viale Morgagni 59, 50134 Florence, Italy;
| | - Nadia Mulinacci
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| | - Marzia Innocenti
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (D.B.); (N.M.); (M.I.)
| |
Collapse
|
19
|
Kaur B, Singh A, Suri S, Usman M, Dutta D. Minor millets: a review on nutritional composition, starch extraction/modification, product formulation, and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4742-4754. [PMID: 36764833 DOI: 10.1002/jsfa.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Minor millet grains are the abode of healthy constituents of human concern that contribute to healthy longevity. Additionally, they are excellent in nutritional value including macronutrients namely, protein (7-13%), carbohydrates (60-70%), fat (1.5-5%), fiber (2-7%) and for micronutrients as well namely; iron, calcium, phosphorus, and magnesium, etc. All these beneficial traits along with the availability of bioactive constituents (polyphenols and antioxidants) prove them to be therapeutic in action and also uplift the immunity among users. Employed isolation tactics for starch also govern yield characteristics and is usually preferred by way of wet method. Minor millets are abundant in starch (50-70%) thus application broadness is another attribute which could be addressed in vivid food segments. In case, native starches somehow possess least application credentials in food and non-food sectors thus modification is the only alternative to eliminate shortcomings. As in trend, modification using physical, chemical, and enzymatic ways have a wide impact on the properties of millet starch. The present review summarizes the nutritional, bioactive and therapeutic potential of minor millets, along with ways of starch modification and product development through millet involvement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baljeet Kaur
- Department of Food Technology, Mata Gujri College, Fatehgarh, Punjab, India
| | - Ajay Singh
- Department of Food Technology, Mata Gujri College, Fatehgarh, Punjab, India
| | - Shweta Suri
- Amity Institute of Food Technology (AIFT), Amity University Uttar Pradesh, Noida, India
| | - Muhammad Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Debashis Dutta
- Department of Food Processing Technology, Mirmadan Mohanlal Government Polytechnic, Nadia, India
| |
Collapse
|
20
|
Ledley AJ, Ziegler GR, Elias RJ, Cockburn DW. Microscopic assessment of the degradation of millet starch granules by endogenous and exogenous enzymes during mashing. Carbohydr Polym 2023; 314:120935. [PMID: 37173011 DOI: 10.1016/j.carbpol.2023.120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The high gelatinization temperature (GT) of millet starch prevents the usage of infusion or step mashes as an effective means to generate fermentable sugars (FS) in brewing because the malt amylases lack thermostability at GT. Here, we investigate processing modifications to determine if millet starch can be efficiently degraded below GT. We determined that producing finer grists through milling did not introduce enough granule damage to markedly change gelatinization characteristics, though there was improved liberation of the endogenous enzymes. Alternatively, exogenous enzyme preparations were added to investigate their ability to degrade intact granules. At the recommended dosages (0.625 μL/g malt), significant FS concentrations were observed, although at lower concentrations and with a much-altered profile than possible with a typical wort. When exogenous enzymes were introduced at high (10×) addition rates, significant losses of granule birefringence and granule hollowing were observed well below GT, suggesting these exogenous enzymes can be utilized to digest millet malt starch below GT. The exogenous maltogenic α-amylase appears to drive the loss of birefringence, but more research is needed to understand the observed predominate glucose production.
Collapse
Affiliation(s)
- Andrew J Ledley
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory R Ziegler
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan J Elias
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Darrell W Cockburn
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Balakumaran M, Gokul Nath K, Giridharan B, Dhinesh K, Dharunbalaji AK, Malini B, Sunil CK. White finger millet starch: Hydrothermal and microwave modification and its characterisation. Int J Biol Macromol 2023; 242:124619. [PMID: 37141966 DOI: 10.1016/j.ijbiomac.2023.124619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
White finger millet (WFM) starch was modified by hydrothermal (HS) and microwave (MS) methods. Modification methods had a significant change in the b* value observed in the HS sample, and it caused the higher chroma (∆C) value. The treatments have not significantly changed the chemical composition and water activity (aw) of native starch (NS) but reduced the pH value. The gel hydration properties of modified starch enhanced significantly, especially in the HS sample. The least NS gelation concentration (LGC) of 13.63 % increased to 17.74 % in HS and 16.41 % in MS. The pasting temperature of the NS got reduced during the modification process and altered the setback viscosity. The starch samples exhibit the shear thinning behavior and reduce starch molecules' consistency index (K). FTIR results exhibit that the modification process highly altered the short-range order of starch molecules more than the double helix structure. A significant reduction in relative crystallinity was observed in the XRD diffractogram, and the DSC thermogram depicts the significant change in the hydrogen bonding of starch granules. It can be inferred that the HS and MS modification method significantly alters the properties of starch, which can increase the food applications of WFM starch.
Collapse
Affiliation(s)
- M Balakumaran
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - K Gokul Nath
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - B Giridharan
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - K Dhinesh
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - A K Dharunbalaji
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - B Malini
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - C K Sunil
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India; Centre of Excellence for Grain Sciences, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India.
| |
Collapse
|
22
|
Kaur P, Annapure US. Effects of pin-to-plate atmospheric cold plasma for modification of pearl millet (Pennisetum glaucum) starch. Food Res Int 2023; 169:112930. [PMID: 37254356 DOI: 10.1016/j.foodres.2023.112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
The present study was done to analyze the effect of atmospheric pressure non-thermal pin-to-plate plasma at a range of different voltages (170, 200, and 230V) at different time intervals (10, 20, and 30 mins) on under-utilized pearl millet starch. The untreated and treated starches were analyzed for amylose content, pH, carbonyl, and carboxyl group, reducing sugar, turbidity, water, and oil binding property, pasting property, DSC, FTIR, XRD, and molecular weight. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of treated starch. There has been a significant reduction (p < 0.05) in turbidity value by 38.97% and pH value of starch from 6.49 to 4.05. Plasma-treated samples produced clearer pastes with higher stability over storage time. Cold plasma treatment also led to an increase in the ζ potential. However, there has been no significant change in the water activity and oil-binding capacity of the starch. Reducing sugar content, average molecular weight, degree of polymerization, pasting property, XRD, and FTIR data confirmed that cross-linking takes place in samples treated at lower voltages and lesser time followed by depolymerization occurring in harshly treated plasma samples. The study thus points out the possible use of cold plasma for starch modification to produce starches with altered properties.
Collapse
Affiliation(s)
- Parinder Kaur
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Uday S Annapure
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
23
|
Kumar SR, Tangsrianugul N, Suphantharika M. A Review on Isolation, Characterization, Modification, and Applications of Proso Millet Starch. Foods 2023; 12:2413. [PMID: 37372623 DOI: 10.3390/foods12122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Proso millet starch (PMS) as an unconventional and underutilized millet starch is becoming increasingly popular worldwide due to its health-promoting properties. This review summarizes research progress in the isolation, characterization, modification, and applications of PMS. PMS can be isolated from proso millet grains by acidic, alkaline, or enzymatic extraction. PMS exhibits typical A-type polymorphic diffraction patterns and shows polygonal and spherical granular structures with a granule size of 0.3-17 µm. PMS is modified by chemical, physical, and biological methods. The native and modified PMS are analyzed for swelling power, solubility, pasting properties, thermal properties, retrogradation, freeze-thaw stability, and in vitro digestibility. The improved physicochemical, structural, and functional properties and digestibility of modified PMS are discussed in terms of their suitability for specific applications. The potential applications of native and modified PMS in food and nonfood products are presented. Future prospects for research and commercial use of PMS in the food industry are also highlighted.
Collapse
Affiliation(s)
- Simmi Ranjan Kumar
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Nuttinee Tangsrianugul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
24
|
Shi P, Zhao Y, Qin F, Liu K, Wang H. Understanding the multi-scale structure and physicochemical properties of millet starch with varied amylose content. Food Chem 2023; 410:135422. [PMID: 36623455 DOI: 10.1016/j.foodchem.2023.135422] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The multi-scale structure and physicochemical properties of starch from five indigenous millet varieties were investigated and their correlations were revealed. Results showed that apparent amylose content (AAC) ranged from 12.3% to 27.4%, and as the amylose increasing, the ordered degree of starch double-helical, ordered molecular structure and crystalline structures displayed a declined trend. All millet starches showed polygonal, spherical or irregular shapes varied with size, but XIN-3 starch granules (highest AAC) presented higher granule rigidity, compactness and bulk intensity. Specifically, the ordered molecular structure (e.g., higher double-helix content, short-range ordered degree and relative crystallinity) of millet starch with low amylose limited the swelling degree of starch granules and in turn decreased the characteristic viscosity. However, rapidly digestible starch (RDS) was significantly negatively correlated with AAC and ordered molecular structure. The information obtained in this study would be significant in the rational utilization of these millet starches in food industry fields.
Collapse
Affiliation(s)
- Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingting Zhao
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Fang Qin
- School of Nursing, Southern Medical University, Guangzhou 510515, China.
| | - Kun Liu
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hongwei Wang
- School of Food and Biological Engineering, Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
25
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
26
|
Li Y, Wang F, Xu J, Wang T, Zhan J, Ma R, Tian Y. Improvement in the optical properties of starch coatings via chemical-physical combination strategy for fruits preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Ledley AJ, Elias RJ, Cockburn DW. Impact of mashing protocol on the formation of fermentable sugars from millet in gluten-free brewing. Food Chem 2023; 405:134758. [PMID: 36334456 DOI: 10.1016/j.foodchem.2022.134758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022]
Abstract
The production of fermentable sugars (FS) in gluten-free (GF) brewing is hindered by the high starch gelatinization temperatures of GF malts and lower diastatic power compared to barley malt. Our previous work has demonstrated that starch gelatinization was the primary hurdle, and when decoupled from a single mash phase, high concentrations of FS could be produced. However, more research was required to improve the applicability of GF brewing. In this study, millet was used as a model GF malt demonstrating that despite the low α-amylase and β-amylase activities compared to barley malt ∼ 90 % of the FS (∼110 g/L) could be produced within 40 min. Limitations to enzyme extraction and separation due to coarse milling and lautering initially limited FS by ∼ 30 g/L, requiring additional processing or exogenous enzyme supplements that improved fermentable sugar generation by ∼ 20 g/L. Overall, millet is a promising brewing ingredient, provided appropriate mashing procedures are implemented.
Collapse
Affiliation(s)
- Andrew J Ledley
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan J Elias
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Darrell W Cockburn
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Balli D, Cecchi L, Pieraccini G, Venturi M, Galli V, Reggio M, Di Gioia D, Furlanetto S, Orlandini S, Innocenti M, Mulinacci N. Millet Fermented by Different Combinations of Yeasts and Lactobacilli: Effects on Phenolic Composition, Starch, Mineral Content and Prebiotic Activity. Foods 2023; 12:foods12040748. [PMID: 36832825 PMCID: PMC9956183 DOI: 10.3390/foods12040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Millet is the sixth-highest yielding grain in the world and a staple crop for millions of people. Fermentation was applied in this study to improve the nutritional properties of pearl millet. Three microorganism combinations were tested: Saccharomyces boulardii (FPM1), Saccharomyces cerevisiae plus Campanilactobacillus paralimentarius (FPM2) and Hanseniaspora uvarum plus Fructilactobacillus sanfranciscensis (FPM3). All the fermentation processes led to an increase in minerals. An increase was observed for calcium: 254 ppm in FPM1, 282 ppm in FPM2 and 156 ppm in the unfermented sample. Iron increased in FPM2 and FPM3 (approx. 100 ppm) with respect the unfermented sample (71 ppm). FPM2 and FPM3 resulted in richer total phenols (up to 2.74 mg/g) compared to the unfermented sample (2.24 mg/g). Depending on the microorganisms, it was possible to obtain different oligopeptides with a mass cut off ≤10 kDalton that was not detected in the unfermented sample. FPM2 showed the highest resistant starch content (9.83 g/100 g) and a prebiotic activity on Bifidobacterium breve B632, showing a significant growth at 48 h and 72 h compared to glucose (p < 0.05). Millet fermented with Saccharomyces cerevisiae plus Campanilactobacillus paralimentarius can be proposed as a new food with improved nutritional properties to increase the quality of the diet of people who already use millet as a staple food.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.-Ce.R.A), University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Manuel Venturi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Viola Galli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Marta Reggio
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Serena Orlandini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Marzia Innocenti
- Department of NEUROFARBA and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.-Ce.R.A), University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.-Ce.R.A), University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
- Correspondence:
| |
Collapse
|
29
|
Mahajan P, Bera MB. Application of free volume concept and manipulation of network structure parameters for optimum loading of gallic acid in the modified kutki (Panicum sumatrense) millet starch hydrogel matrix. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Chang L, Zhao N, Jiang F, Ji X, Feng B, Liang J, Yu X, Du SK. Structure, physicochemical, functional and in vitro digestibility properties of non-waxy and waxy proso millet starches. Int J Biol Macromol 2022; 224:594-603. [DOI: 10.1016/j.ijbiomac.2022.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
31
|
Kheto A, Das R, Deb S, Bist Y, Kumar Y, Tarafdar A, Saxena DC. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. Int J Biol Macromol 2022; 222:636-651. [PMID: 36174856 DOI: 10.1016/j.ijbiomac.2022.09.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 μm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Saptashish Deb
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
32
|
Mahajan P, Bera MB, Panesar PS, Dixit H. Structural, functional, textural characterization and in vitro starch digestibility of underutilized Kutki millet (Panicum sumatrense) flour. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
A facile method of functional derivatization based on starch acetoacetate. Carbohydr Polym 2022; 289:119468. [DOI: 10.1016/j.carbpol.2022.119468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
34
|
Dimri S, Singh S. Structural, thermal and rheological properties of starches isolated from four different varieties of Indian barnyard millet (
Echinochloafrumentacea
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Smita Dimri
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering & Technology Sangrur Punjab India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering & Technology Sangrur Punjab India
| |
Collapse
|
35
|
Extruded Enzyme-Added Corn Improves the Growth Performance, Intestinal Function, and Microbiome of Weaning Piglets. Animals (Basel) 2022; 12:ani12081002. [PMID: 35454248 PMCID: PMC9027177 DOI: 10.3390/ani12081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the effects of extruded corn with added amylase under different moisture conditions on the growth performance, intestinal function, and microbiome of weaning piglets. Fourty-eight 24-day-old weaning piglets (Duroc × Landrace × Yorkshire, weaned at 22 ± 1 d) with an initial body weight of 6.76 ± 0.15 kg were randomly assigned to one of four dietary treatments with six replicates per treatment and two pigs per replicate: (1) NL (adding 7.5% water before corn extrusion, negative treatment with low moisture); (2) NH (adding 15.0% water before corn extrusion, negative treatment with high moisture); (3) PL (adding 7.5% water and 4 kg/t α-amylase before corn extrusion, positive treatment with low moisture); and (4) PH (adding 15% water and 4 kg/t α-amylase before corn extrusion, positive treatment with high moisture). Results showed that amylase supplementation (4 vs. 0 kg/t) increased the contents of small molecular oligosaccharides of extruded corn (p < 0.05). Amylase supplementation significantly improved the average daily feed intake, apparent total tract digestibility (ATTD) of dry matter, crude protein, gross energy, crude fat, ash, phosphorus, and calcium, and also increased the activities of jejunal trypsin, α-amylase, lipase, sucrase, maltase, γ-glutamyl transferase and alkaline phosphatase activities, improved the duodenal, jejunal and ileal morphology, and increased the relative mRNA expressions of the ZO-1, OCLN, SGLT1, and GLUT2 genes in the jejunum (p < 0.05), whereas it decreased the contents of isobutyric acid in cecal digesta, as well as acetic acid and isobutyric acid in colonic digesta (p < 0.05). Moreover, the linear discriminant analysis effect size (LEfSe) showed that piglets fed extruded corn with added enzymes contained less intestinal pathogenic bacteria, such as Holdemanella and Desulfovibrio, compared with piglets fed just extruded corn. In summary, the results of the present study indicated that the supplementation of α-amylase during the conditioning and extruding process of corn increased the small molecular oligosaccharide content of corn starch. Moreover, piglets receiving extruded enzyme-added corn had better growth performance, which was associated with the improved intestinal digestive and absorptive function, as well as the intestinal microbiome.
Collapse
|
36
|
Wang J, Yu Y, Yue W, Feng Y, Wang YN, Shi B. Preparation of high solid content oxidized starch by acid pretreatment–H2O2 oxidation and its performance as the ligand in zirconium tanning. Carbohydr Res 2022; 511:108501. [DOI: 10.1016/j.carres.2022.108501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
|
37
|
Mahajan P, Bera MB, Panesar PS. Structural, functional, textural characterization and in vitro digestibility of underutilized Kutki millet (Panicum sumatrense) starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Mahajan P, Bera MB, Panesar PS. Modification of Kutki millet (Panicum sumatrense) starch properties by the addition of amino acids for the preparation of hydrogels and its characterization. Int J Biol Macromol 2021; 191:9-18. [PMID: 34537297 DOI: 10.1016/j.ijbiomac.2021.09.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Starch is a biopolymer containing hydrophilic groups and is used in hydrogels preparation. Amino acids are multifunctional monomers of proteins that can be used as a cross linker to modify the starch by incorporating new functional groups into its chains. In this study, the Kutki millet starch was isolated and modified with lysine (positively charged), aspartic acid (negatively charged), and threonine (neutral) at varying pH levels. These modified starches were characterized for their various functional, structural, pasting, and textural properties. Hydrogels prepared from Lys9-KMS, Thr9-KMS, and AA11-KMS, possessing less adhesiveness, strong integrity, and hardness were then characterized for their XRD and morphological characterization. The principal component analysis (PCA) biplot showed that the samples modified at higher pH levels are positively correlated with the textural properties, swelling power and amylose content (I and IV quadrants), than those modified at lower pH. It may be inferred that starch modified with amino acid at higher pH have good textural properties than those at lower pH. Results of the overall investigation indicated that among these three amino acids, lysine could be a better cross linker for modification of Kutki millet starch and preparation of their gels for the delivery of nutraceuticals.
Collapse
Affiliation(s)
- Palak Mahajan
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur 148106, Punjab, India
| | - Manab Bandhu Bera
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur 148106, Punjab, India.
| | - Parmjit Singh Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur 148106, Punjab, India
| |
Collapse
|
39
|
Nasrollahzadeh M, Ghasemzadeh M, Gharoubi H, Nezafat Z. Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Proso-millet starch: Properties, functionality, and applications. Int J Biol Macromol 2021; 190:960-968. [PMID: 34536472 DOI: 10.1016/j.ijbiomac.2021.09.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
Previously proso-millet, considered an underutilized cereal, has drawn considerable attention due to health benefits like good nutritional profile, low glycemic index, and gluten-free. The present review discusses starch extractability, structural characteristics, morphology, and physicochemical properties. Starch properties mainly depend on the amylose and amylopectin composition and distribution of brained chains. A very diverse starch structure and morphology were observed among the waxy and non-waxy cultivars. The amylose content ranged from 0.75 to 28.3% in many varieties, but exceptionally Hongmeizi variety showed a 32.3% as per the reported evidence. There are a positive correlation between the amylose content and cooking quality, thermal and pasting properties. The size and shape of smallest to largest starch granules varied between 0.3 and 17 μm and round to polygonal, respectively. The non-waxy starch varieties of proso-millet are widely used in food processing due to high resistance to swelling during heat treatment. Few food applications of proso-millet are bakery products like gluten-free bread, porridge, pasta, ready-to-eat breakfast cereals, infant foods, and distilleries. We can conclude that proso millet is an alternative to existing starch for its quality characteristics and provides insight to many food processing industries.
Collapse
|
41
|
Kaushik N, Yadav P, Khandal RK, Aggarwal M. Review of ways to enhance the nutritional properties of millets for their value‐addition. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nidhi Kaushik
- Department of Basic and Applied Science National Institute of Food Technology, Entrepreneurship and Management Sonipat India
| | - Prachi Yadav
- Department of Basic and Applied Science National Institute of Food Technology, Entrepreneurship and Management Sonipat India
| | | | - Manjeet Aggarwal
- Department of Basic and Applied Science National Institute of Food Technology, Entrepreneurship and Management Sonipat India
| |
Collapse
|