1
|
Singh R, Jain S, Paliwal V, Verma K, Paliwal S, Sharma S. Does Metabolic Manager Show Encouraging Outcomes in Alzheimer's?: Challenges and Opportunity for Protein Tyrosine Phosphatase 1b Inhibitors. Drug Dev Res 2024; 85:e70026. [PMID: 39655712 DOI: 10.1002/ddr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Protein tyrosine phosphatase 1b (PTP1b) is a member of the protein tyrosine phosphatase (PTP) enzyme group and encoded as PTP1N gene. Studies have evidenced an overexpression of the PTP1b enzyme in metabolic syndrome, anxiety, schizophrenia, neurodegeneration, and neuroinflammation. PTP1b inhibitor negatively regulates insulin and leptin pathways and has been explored as an antidiabetic agent in various clinical trials. Notably, the preclinical studies have shown that recuperating metabolic dysfunction and dyshomeostasis can reverse cognition and could be a possible approach to mitigate multifaceted Alzheimer's disease (AD). PTP1b inhibitor thus has attracted attention in neuroscience, though the development is limited to the preclinical stage, and its exploration in large clinical trials is warranted. This review provides an insight on the development of PTP1b inhibitors from different sources in diabesity. The crosstalk between metabolic dysfunction and insulin insensitivity in AD and type-2 diabetes has also been highlighted. Furthermore, this review presents the significance of PTP1b inhibition in AD based on pathophysiological facets, and recent evidences from preclinical and clinical studies.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center Shreveport, Louisiana, USA
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
2
|
Rocha S, Silva J, Silva VLM, Silva AMS, Corvo ML, Freitas M, Fernandes E. Pyrazoles have a multifaceted anti-inflammatory effect targeting prostaglandin E 2, cyclooxygenases and leukocytes' oxidative burst. Int J Biochem Cell Biol 2024; 172:106599. [PMID: 38797495 DOI: 10.1016/j.biocel.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Elevated levels of prostaglandin E2 have been implicated in the pathophysiology of various diseases. Anti-inflammatory drugs that act through the inhibition of cyclooxygenase enzymatic activity, thereby leading to the suppression of prostaglandin E2, are often associated with several side effects due to their non-specific inhibition of cyclooxygenase enzymes. Consequently, the targeted suppression of prostaglandin E2 production with innovative molecules and/or mechanisms emerges as a compelling therapeutic strategy for the treatment of inflammatory-related diseases. Therefore, in this study, a systematic analysis of 28 pyrazole derivatives was conducted to explore their potential mechanisms for reducing prostaglandin E2 levels. In this context, the evaluation of these derivatives extended to examining their capacity to reduce prostaglandin E2in vitro in human whole blood, inhibit cyclooxygenase-1 and cyclooxygenase-2 enzymes, modulate cyclooxygenase-2 expression, and suppress oxidative burst in human leukocytes. The results enabled the establishment of significant structure-activity relationships, elucidating key determinants for their activities. In particular, the 4-styryl group on the pyrazole moiety and the presence of chloro substitutions were identified as key determinants. Pyrazole 8 demonstrated the capacity to reduce prostaglandin E2 levels by downregulating cyclooxygenase-2 expression, and pyrazole-1,2,3-triazole 18 emerged as a dual-acting agent, inhibiting human leukocytes' oxidative burst and cyclooxygenase-2 activity. Furthermore, pyrazole 26 demonstrated effective reduction of prostaglandin E2 levels through selective cyclooxygenase-1 inhibition. These results underscore the multifaceted anti-inflammatory potential of pyrazoles, providing new insights into the substitutions and structural frameworks that are beneficial for the studied activity.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Jorge Silva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Vera L M Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon 1649-003, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
3
|
Lathwal E, Kumar S, Sahoo PK, Ghosh S, Mahata S, Nasare VD, Kapavarapu R, Kumar S. Pyrazole-based and N,N-diethylcarbamate functionalized some novel aurone analogs: Design, synthesis, cytotoxic evaluation, docking and SAR studies, against AGS cancer cell line. Heliyon 2024; 10:e26843. [PMID: 38463825 PMCID: PMC10920165 DOI: 10.1016/j.heliyon.2024.e26843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
The present study involves the design, synthesis, and biological evaluation of a series of thirty-three, pyrazole-based and N,N-diethylcarbamate functionalized, novel aurone analogs, against AGS cancer cell line. These novel aurone analogs are obtained from the reaction of pyrazole-based 6-hydroxyaurones with diethyl carbamoyl chloride using mild basic reagent. The cytotoxic activities of these compounds were evaluated against a human gastric adenocarcinoma cell line (AGS) and disclosed some potential outcomes as several analogs were found to have cytotoxicity better than the reference drugs Oxaliplatin and Leucovorin. The structure-activity relationship (SAR) study further unveiled the critical role of replacing the hydroxyl group in ring A with a carbamoyl group for cytotoxic activity. Among these aurone analogs, 8e and 8f, with IC50 values of 6.5 ± 0.024 μM and 6.6 ± 0.035 μM, respectively, are identified as the most active compounds. Molecular docking studies were conducted against HER2, a human epidermal growth factor involved in gastric and ovarian cancer, to investigate the binding interactions between the compounds and the protein HER2, where7e and 8e exhibited maximum interactions.
Collapse
Affiliation(s)
- Ekta Lathwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
- Govt. College, Tigaon, Faridabad, 121101, Haryana, India
| | - Sanjeev Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
- PGT Chemistry, KendriyaVidyalaya Kokrajhar, Assam, 783370, India
| | - Pranab Kumar Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, India
| | - Vilas D. Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, India
| | - Ravikumar Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Atmakur, Mangalagiri, Andhra Pradesh, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| |
Collapse
|
4
|
Derki NEH, Kerassa A, Belaidi S, Derki M, Yamari I, Samadi A, Chtita S. Computer-Aided Strategy on 5-(Substituted benzylidene) Thiazolidine-2,4-Diones to Develop New and Potent PTP1B Inhibitors: QSAR Modeling, Molecular Docking, Molecular Dynamics, PASS Predictions, and DFT Investigations. Molecules 2024; 29:822. [PMID: 38398573 PMCID: PMC10892620 DOI: 10.3390/molecules29040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A set of 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives was explored to study the main structural requirement for the design of protein tyrosine phosphatase 1B (PTP1B) inhibitors. Utilizing multiple linear regression (MLR) analysis, we constructed a robust quantitative structure-activity relationship (QSAR) model to predict inhibitory activity, resulting in a noteworthy correlation coefficient (R2) of 0.942. Rigorous cross-validation using the leave-one-out (LOO) technique and statistical parameter calculations affirmed the model's reliability, with the QSAR analysis revealing 10 distinct structural patterns influencing PTP1B inhibitory activity. Compound 7e(ref) emerged as the optimal scaffold for drug design. Seven new PTP1B inhibitors were designed based on the QSAR model, followed by molecular docking studies to predict interactions and identify structural features. Pharmacokinetics properties were assessed through drug-likeness and ADMET studies. After that density functional theory (DFT) was conducted to assess the stability and reactivity of potential diabetes mellitus drug candidates. The subsequent dynamic simulation phase provided additional insights into stability and interactions dynamics of the top-ranked compound 11c. This comprehensive approach enhances our understanding of potential drug candidates for treating diabetes mellitus.
Collapse
Affiliation(s)
- Nour-El Houda Derki
- VTRS Laboratory, Faculty of Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria (A.K.)
| | - Aicha Kerassa
- VTRS Laboratory, Faculty of Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria (A.K.)
- Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and Environment, University of Biskra, P.O. Box 145, Biskra 07000, Algeria;
| | - Salah Belaidi
- Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and Environment, University of Biskra, P.O. Box 145, Biskra 07000, Algeria;
| | - Maroua Derki
- VTRS Laboratory, Faculty of Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria (A.K.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, UAEU, Al Ain P.O. Box 15551, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| |
Collapse
|
5
|
Rocha S, Amaro A, Ferreira-Junior MD, Proença C, Silva AMS, Costa VM, Oliveira S, Fonseca DA, Silva S, Corvo ML, Freitas M, Matafome P, Fernandes E. Melanoxetin: A Hydroxylated Flavonoid Attenuates Oxidative Stress and Modulates Insulin Resistance and Glycation Pathways in an Animal Model of Type 2 Diabetes Mellitus. Pharmaceutics 2024; 16:261. [PMID: 38399315 PMCID: PMC10892797 DOI: 10.3390/pharmaceutics16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes mellitus (DM) continues to escalate, necessitating innovative therapeutic approaches that target distinct pathways and address DM complications. Flavonoids have been shown to possess several pharmacological activities that are important for DM. This study aimed to evaluate the in vivo effects of the flavonoid melanoxetin using Goto-Kakizaki rats. Over a period of 14 days, melanoxetin was administered subcutaneously to investigate its antioxidant, anti-inflammatory, and antidiabetic properties. The results show that melanoxetin reduced insulin resistance in adipose tissue by targeting protein tyrosine phosphatase 1B. Additionally, melanoxetin counteracted oxidative stress by reducing nitrotyrosine levels and modulating superoxide dismutase 1 and hemeoxygenase in adipose tissue and decreasing methylglyoxal-derived hydroimidazolone (MG-H1), a key advanced glycation end product (AGE) implicated in DM-related complications. Moreover, the glyoxalase 1 expression decreased in both the liver and the heart, correlating with reduced AGE levels, particularly MG-H1 in the heart. Melanoxetin also demonstrated anti-inflammatory effects by reducing serum prostaglandin E2 levels, and increasing the antioxidant status of the aorta wall through enhanced acetylcholine-dependent relaxation in the presence of ascorbic acid. These findings provide valuable insights into melanoxetin's therapeutic potential in targeting multiple pathways involved in type 2 DM, particularly in mitigating oxidative stress and glycation.
Collapse
Affiliation(s)
- Sónia Rocha
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| | - Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Marcos D. Ferreira-Junior
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil
| | - Carina Proença
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| | - Artur M. S. Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vera M. Costa
- Research Unit on Applied Molecular Biosciences (UCIBIO), Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Sara Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Diogo A. Fonseca
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sónia Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Marisa Freitas
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (S.O.); (D.A.F.); (S.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| | - Eduarda Fernandes
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (C.P.); (M.F.)
| |
Collapse
|
6
|
Sousa JLC, Albuquerque HMT, Silva AMS. Drug Discovery Based on Oxygen and Nitrogen (Non-)Heterocyclic Compounds Developed @LAQV-REQUI MTE/Aveiro. Pharmaceuticals (Basel) 2023; 16:1668. [PMID: 38139794 PMCID: PMC10747949 DOI: 10.3390/ph16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Artur Silva's research group has a long history in the field of medicinal chemistry. The development of new synthetic methods for oxygen (mostly polyphenols, e.g., 2- and 3-styrylchromones, xanthones, flavones) and nitrogen (e.g., pyrazoles, triazoles, acridones, 4-quinolones) heterocyclic compounds in order to be assessed as antioxidant, anti-inflammatory, antidiabetic, and anticancer agents has been the main core work of our research interests. Additionally, the synthesis of steroid-type compounds as anti-Alzheimer drugs as well as of several chromophores as important dyes for cellular imaging broadened our research scope. In this review article, we intend to provide an enlightened appraisal of all the bioactive compounds and their biological properties that were synthesized and studied by our research group in the last two decades.
Collapse
Affiliation(s)
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.L.C.S.); (H.M.T.A.)
| |
Collapse
|
7
|
Zhao Y, Liu Y, Deng J, Zhu C, Ma X, Jiang M, Fan D. Ginsenoside F4 Alleviates Skeletal Muscle Insulin Resistance by Regulating PTP1B in Type II Diabetes Mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14263-14275. [PMID: 37726223 DOI: 10.1021/acs.jafc.3c01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with increasing morbidity. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of the insulin signaling cascade and has attracted intensive investigation in the T2DM study. Ginseng is widely used to treat metabolic diseases, while the effects of ginsenoside F4 (F4) on T2DM have remained unknown. Here, we identify F4 as an inhibitor of skeletal muscle insulin resistance. The results showed that F4 significantly improved the hyperglycemic state of db/db mice, alleviated dyslipidemia, and promoted skeletal muscle glucose uptake. This phenomenon was closely related to the inhibition of the PTP1B activity. On the one hand, the inhibition of PTP1B activity by F4 resulted in increased insulin receptor (INSR) and insulin receptor substrate 1 tyrosine phosphorylation and enhanced insulin sensitivity. On the other hand, F4 as a PTP1B inhibitor inhibited the inositol-requiring enzyme 1 (IRE-1)/recombinant TNF receptor associated factor 2 (TRAF2)/c-Jun N-terminal kinase signaling pathway and alleviated skeletal muscle endoplasmic reticulum (ER) stress, thereby reducing IRS-1 serine phosphorylation. Both finally activated the PI3K/AKT signaling pathway and promoted glucose transporter protein 4 translocation to the cell membrane for glucose uptake. Taken together, our experiments demonstrate that F4 activates the insulin signaling pathway by inhibiting the activity of PTP1B while inhibiting the IRE-1/TRAF2/JNK signaling pathway, enhancing insulin sensitivity, and alleviating ER stress in the skeletal muscle of db/db mice. Our results indicate that F4 can be used as a PTP1B inhibitor for the treatment of T2DM.
Collapse
Affiliation(s)
- Yujie Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
8
|
Agrawal N, Dhakrey P, Pathak S. A comprehensive review on the research progress of PTP1B inhibitors as antidiabetics. Chem Biol Drug Des 2023; 102:921-938. [PMID: 37232059 DOI: 10.1111/cbdd.14275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Diabetes mellitus (DM) is a serious global health concern affecting over 500 million people. To put it simply, it is one of the most dangerous metabolic illnesses. Insulin resistance is the root cause of 90% of all instances of diabetes, all of which are classified as Type 2 DM. Untreated, it poses a hazard to civilization since it can lead to terrifying consequences and even death. Oral hypoglycemic medicines presently available act in a variety of ways, targeting various organs and pathways. The use of protein tyrosine phosphatase 1B (PTP1B) inhibitors, on the contrary, is a novel and effective method of controlling type 2 diabetes. PTP1B is a negative insulin signaling pathway regulator; hence, inhibiting PTP1B increases insulin sensitivity, glucose absorption, and energy expenditure. PTP1B inhibitors also restore leptin signaling and are considered a potential obesity target. In this review, we have compiled a summary of the most recent advances in synthetic PTP1B inhibitors from 2015 to 2022 which have scope to be developed as clinical antidiabetic drugs.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Parth Dhakrey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
9
|
Srinivasan K, Altemimi AB, Narayanaswamy R, Vasantha Srinivasan P, Najm MAA, Mahna N. GC-MS, alpha-amylase, and alpha-glucosidase inhibition and molecular docking analysis of selected phytoconstituents of small wild date palm fruit ( Phoenix pusilla). Food Sci Nutr 2023; 11:5304-5317. [PMID: 37701203 PMCID: PMC10494657 DOI: 10.1002/fsn3.3489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Phoenix pusilla (Arecaceae), commonly known as "small wild date palm", is regarded as one of the underutilized fruit crops in South India. Methanol extract of P. pusilla ripened fruits (PPRF) was analyzed for in vitro porcine pancreatic alpha-amylase (PPAA) and rat small intestine alpha-glucosidase (RIAG) inhibition activities, and through gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS analysis showed the presence of 25 phytoconstituents from PPRF which was further assessed on the docking behavior of five targeted enzymes diabetes mellitus (DM) namely (i) human aldose reductase, (ii) protein tyrosine phosphatase 1B, (iii) pancreatic alpha-amylase, (iv) peroxisome proliferator-activated receptor gamma, and (v) dipeptidyl peptidase IV by using the AutoDock Vina method. In addition to this physicochemical, bioactivity score, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was performed using the Molinspiration and pkCSM free online servers. Methanolic extract of PPRF showed 50% inhibition concentration (IC50) at 69.86 and 72.60 μg/mL levels against PPAA and RIAG enzymes activities, respectively. Interestingly in the present study, GC-MS analysis showed the presence of 25 phytoconstituents from PPRF. Physicochemical analysis of PPRF has exhibited that 13 ligands have complied well with Lipinski's Rule of Five (RoF). With regard to ADMET analysis, one ligand (9,12-octadecadienoic acid [Z,Z]) has predicated to possess both the hepatotoxicity (HT) and skin sensitization (SS) effect. The docking studies showed that 1-formyl-2,5-dimethoxy-6,9,10-trimethyl-anthracene exhibited the maximum atomic contact energy (ACE) for all the five target enzymes of DM. Thus, the current study suggested that the methanolic extract of PPRF and its phytoconstituents could be considered as potent antidiabetic agents.
Collapse
Affiliation(s)
- Kumaraswamy Srinivasan
- Department of BiochemistrySt. Peter's Institute of Higher Education and Research (SPIHER)ChennaiIndia
| | - Ammar B. Altemimi
- Department of Food Science, College of AgricultureUniversity of BasrahBasrahIraq
- College of MedicineUniversity of Warith Al‐AnbiyaaKarbalaIraq
| | - Radhakrishnan Narayanaswamy
- Department of BiochemistrySaveetha Medical College and Hospital, SIMATS (Deemed to be University)ChennaiIndia
| | | | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
10
|
Derkach KV, Gureev MA, Babushkina AA, Mikhaylov VN, Zakharova IO, Bakhtyukov AA, Sorokoumov VN, Novikov AS, Krasavin M, Shpakov AO, Balova IA. Dual PTP1B/TC-PTP Inhibitors: Biological Evaluation of 3-(Hydroxymethyl)cinnoline-4( 1H)-Ones. Int J Mol Sci 2023; 24:ijms24054498. [PMID: 36901928 PMCID: PMC10002984 DOI: 10.3390/ijms24054498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Dual inhibitors of protein phosphotyrosine phosphatase 1B (PTP1B)/T-cell protein phosphotyrosine phosphatase (TC-PTP) based on the 3-(hydroxymethyl)-4-oxo-1,4-dihydrocinnoline scaffold have been identified. Their dual affinity to both enzymes has been thoroughly corroborated by in silico modeling experiments. The compounds have been profiled in vivo for their effects on body weight and food intake in obese rats. Likewise, the effects of the compounds on glucose tolerance, insulin resistance, as well as insulin and leptin levels, have been evaluated. In addition, the effects on PTP1B, TC-PTP, and Src homology region 2 domain-containing phosphatase-1 (SHP1), as well as the insulin and leptin receptors gene expressions, have been assessed. In obese male Wistar rats, a five-day administration of all studied compounds led to a decrease in body weight and food intake, improved glucose tolerance, attenuated hyperinsulinemia, hyperleptinemia and insulin resistance, and also compensatory increased expression of the PTP1B and TC-PTP genes in the liver. The highest activity was demonstrated by 6-Chloro-3-(hydroxymethyl)cinnolin-4(1H)-one (compound 3) and 6-Bromo-3-(hydroxymethyl)cinnolin-4(1H)-one (compound 4) with mixed PTP1B/TC-PTP inhibitory activity. Taken together, these data shed light on the pharmacological implications of PTP1B/TC-PTP dual inhibition, and on the promise of using mixed PTP1B/TC-PTP inhibitors to correct metabolic disorders.
Collapse
Affiliation(s)
- Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, 194223 St. Petersburg, Russia
| | - Maxim A. Gureev
- Center of Bio- and Chemoinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia A. Babushkina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Vladimir N. Mikhaylov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Irina O. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, 194223 St. Petersburg, Russia
| | - Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, 194223 St. Petersburg, Russia
| | - Viktor N. Sorokoumov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
- Institute for Medicine and Life Sciences, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez av. 44, 194223 St. Petersburg, Russia
| | - Irina A. Balova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-812-428-6733
| |
Collapse
|
11
|
Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020669. [PMID: 36677725 PMCID: PMC9862086 DOI: 10.3390/molecules28020669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The review presents extensive data (from the author's work and the literature) on the stereochemical structure of functionalized organophosphorus azoles (pyrroles, pyrazoles, imidazoles and benzazoles) and related compounds, using multinuclear 1H, 13C, 31P NMR spectroscopy and quantum chemistry. 31P NMR spectroscopy, combined with high-level quantum-chemical calculations, is the most convenient and reliable approach to studying tetra-, penta-, and hexacoordinated phosphorus atoms of phosphorylated N-vinylazoles and evaluating their Z/E isomerization.
Collapse
|
12
|
Silva VLM, Silva AMS. Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules 2022; 27:molecules27113493. [PMID: 35684432 PMCID: PMC9182008 DOI: 10.3390/molecules27113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Vinylpyrazoles, also known as pyrazolyl olefins, are interesting motifs in organic chemistry but have been overlooked. This review describes the properties and synthetic routes of vinylpyrazoles and highlights their versatility as building blocks for the construction of more complex organic molecules. Concerning the reactivity of vinylpyrazoles, the topics surveyed herein include their use in cycloaddition reactions, free-radical polymerizations, halogenation and hydrohalogenation reactions, and more recently in transition-metal-catalyzed reactions, among other transformations. The current state of the art about vinylpyrazoles is presented with an eye to future developments regarding the chemistry of these interesting compounds. Styrylpyrazoles were not considered in this review, as they were the subject of a previous review article published in 2020.
Collapse
|
13
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
14
|
Santos CMM, Proença C, Freitas M, Araújo A, Silva AMS, Fernandes E. Inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by hydroxylated xanthones. Food Funct 2022; 13:7930-7941. [DOI: 10.1039/d2fo00023g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Xanthones are oxygen-containing heterocyclic compounds that exhibit a wide range of biological and pharmacological properties. Some natural and synthetic derivatives have been identified for their antidiabetic profile, mainly as α-glucosidase...
Collapse
|
15
|
Rampadarath A, Balogun FO, Pillay C, Sabiu S. Identification of Flavonoid C-Glycosides as Promising Antidiabetics Targeting Protein Tyrosine Phosphatase 1B. J Diabetes Res 2022; 2022:6233217. [PMID: 35782627 PMCID: PMC9249544 DOI: 10.1155/2022/6233217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of the insulin signaling pathway, has gained attention as a validated druggable target in the management of type 2 diabetes mellitus (T2DM). The lack of clinically approved PTP1B inhibitors has continued to prompt research in plant-derived therapeutics possibly due to their relatively lesser toxicity profiles. Flavonoid C-glycosides are one of the plant-derived metabolites gaining increased relevance as antidiabetic agents, but their possible mechanism of action remains largely unknown. This study investigates the antidiabetic potential of flavonoid C-glycosides against PTP1B in silico and in vitro. Of the seven flavonoid C-glycosides docked against the enzyme, three compounds (apigenin, vitexin, and orientin) had the best affinity for the enzyme with a binding score of -7.3 kcal/mol each, relative to -7.4 kcal/mol for the reference standard, ursolic acid. A further probe (in terms of stability, flexibility, and compactness) of the complexes over a molecular dynamics time study of 100 ns for the three compounds suggested orientin as the most outstanding inhibitor of PTP1B owing to its overall -34.47 kcal/mol binding energy score compared to ursolic acid (-19.24 kcal/mol). This observation was in accordance with the in vitro evaluation result, where orientin had a half maximal inhibitory concentration (IC50) of 0.18 mg/ml relative to 0.13 mg/ml for the reference standard. The kinetics of inhibition of PTP1B by orientin was mixed-type with V max and K m values of 0.004 μM/s and 0.515 μM. Put together, the results suggest orientin as a potential PTP1B inhibitor and could therefore be further explored in the management T2DM as a promising therapeutic agent.
Collapse
Affiliation(s)
- Athika Rampadarath
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
16
|
Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021; 11:1692. [PMID: 34827690 PMCID: PMC8615418 DOI: 10.3390/biom11111692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari Bd., 020021 Bucharest, Romania
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| |
Collapse
|
17
|
Phong NV, Oanh VT, Yang SY, Choi JS, Min BS, Kim JA. PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: Kinetic properties and molecular docking simulation. Int J Biol Macromol 2021; 188:719-728. [PMID: 34416263 DOI: 10.1016/j.ijbiomac.2021.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
By various chromatographic methods, 30 phloroglucinols (1-30) were isolated from a methanol extract of Dryopteris crassirhizoma, including two new dimeric phloroglucinols (13 and 25). The structures of the isolates were confirmed by HR-MS, 1D, and 2D NMR as well as by comparison with the literature. The protein tyrosine phosphatase 1B (PTP1B) effects of the isolated compounds (1-30) were evaluated using sodium orthovanadate and ursolic acid as a positive control. Among them, trimeric phloroglucinols 26-28 significantly exhibited the PTP1B inhibitory effects with the IC50 values of 1.19 ± 0.13, 1.00 ± 0.04, 1.23 ± 0.05 μM, respectively. In addition, the kinetic analysis revealed compounds 26-28 acted as competitive inhibitors against PTP1B enzyme with Ki values of 0.63, 0.61, 1.57 μM, respectively. Molecular docking simulations were performed to demonstrate that these active compounds can bind with the catalytic sites of PTP1B with negative binding energies and the results are in accordance with that of the kinetic studies. In vitro and in silico results suggest that D. crassirhizoma rhizomes together with compounds 26-28 are potential candidates for treating type 2 diabetes.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vu Thi Oanh
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Saeed M, Shoaib A, Tasleem M, Alabdallah NM, Alam MJ, Asmar ZE, Jamal QMS, Bardakci F, Alqahtani SS, Ansari IA, Badraoui R. Assessment of Antidiabetic Activity of the Shikonin by Allosteric Inhibition of Protein-Tyrosine Phosphatase 1B (PTP1B) Using State of Art: An In Silico and In Vitro Tactics. Molecules 2021; 26:3996. [PMID: 34208908 PMCID: PMC8271486 DOI: 10.3390/molecules26133996] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial disease that affects both developing and developed countries and is a major public health concern. Many synthetic drugs are available in the market, which counteracts the associated pathologies. However, due to the propensity of side effects, there is an unmet need for the investigation of safe and effective drugs. This research aims to find a novel phytoconstituent having diminished action on blood glucose levels with the least side effects. Shikonin is a naturally occurring naphthoquinone dying pigment obtained by the roots of the Boraginaceae family. Besides its use as pigments, it can be used as an antimicrobial, anti-inflammatory, and anti-tumor agent. This research aimed to hypothesize the physicochemical and phytochemical properties of Shikonin's in silico interaction with protein tyrosine phosphate 1B, as well as it's in vitro studies, in order to determine its potential anti-diabetic impact. To do so, molecular docking experiments with target proteins were conducted to assess their anti-diabetic ability. Analyzing associations with corresponding amino acids revealed the significant molecular interactions between Shikonin and diabetes-related target proteins. In silico pharmacokinetics and toxicity profile of Shikonin using ADMET Descriptor, Toxicity Prediction, and Calculate Molecular Properties tools from Biovia Discovery Studio v4.5. Filter by Lipinski and Veber Rule's module from Biovia Discovery Studio v4.5 was applied to assess the drug-likeness of Shikonin. The in vitro studies exposed that Shikonin shows an inhibitory potential against the PTP1B with an IC50 value of 15.51 µM. The kinetics studies revealed that it has a competitive inhibitory effect (Ki = 7.5 M) on the enzyme system, which could be useful in the production of preventive and therapeutic agents. The findings of this research suggested that the Shikonin could be used as an anti-diabetic agent and can be used as a novel source for drug delivery.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 383, Dammam 31113, Saudi Arabia;
| | - Md Jahoor Alam
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Zeina El Asmar
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52571, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | | | - Riadh Badraoui
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| |
Collapse
|