1
|
Mastella P, Todaro B, Luin S. Nanogels: Recent Advances in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1300. [PMID: 39120405 PMCID: PMC11314474 DOI: 10.3390/nano14151300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
In the context of advanced nanomaterials research, nanogels (NGs) have recently gained broad attention for their versatility and promising biomedical applications. To date, a significant number of NGs have been developed to meet the growing demands in various fields of biomedical research. Summarizing preparation methods, physicochemical and biological properties, and recent applications of NGs may be useful to help explore new directions for their development. This article presents a comprehensive overview of the latest NG synthesis methodologies, highlighting advances in formulation with different types of hydrophilic or amphiphilic polymers. It also underlines recent biomedical applications of NGs in drug delivery and imaging, with a short section dedicated to biosafety considerations of these innovative nanomaterials. In conclusion, this article summarizes recent innovations in NG synthesis and their numerous applications, highlighting their considerable potential in the biomedical field.
Collapse
Affiliation(s)
- Pasquale Mastella
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Biagio Todaro
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium;
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
2
|
Kumar N, Singh S, Sharma P, Kumar B, Kumar A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels 2024; 10:61. [PMID: 38247784 PMCID: PMC10815403 DOI: 10.3390/gels10010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
In recent years, stimuli-responsive nanogels that can undergo suitable transitions under endogenous (e.g., pH, enzymes and reduction) or exogenous stimuli (e.g., temperature, light, and magnetic fields) for on-demand drug delivery, have received significant interest in biomedical fields, including drug delivery, tissue engineering, wound healing, and gene therapy due to their unique environment-sensitive properties. Furthermore, these nanogels have become very popular due to some of their special properties such as good hydrophilicity, high drug loading efficiency, flexibility, and excellent biocompatibility and biodegradability. In this article, the authors discuss current developments in the synthesis, properties, and biomedical applications of stimulus-responsive nanogels. In addition, the opportunities and challenges of nanogels for biomedical applications are also briefly predicted.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India
| | - Sauraj Singh
- College of Pharmacy, Gachon University, Incheon 13120, Republic of Korea;
| | - Piyush Sharma
- Department of Zoology, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India;
| | - Bijender Kumar
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea;
| | - Anuj Kumar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
4
|
Divanach P, Fanouraki E, Mitraki A, Harmandaris V, Rissanou AN. Investigating the complexation propensity of self-assembling dipeptides with the anticancer peptide-drug Bortezomib: a computational study. SOFT MATTER 2023; 19:8684-8697. [PMID: 37846478 DOI: 10.1039/d3sm00930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The investigation of potential self-assembled peptides as carriers for the delivery of anticancer drug Bortezomib is the topic of the present study. The self-assembly of Bortezomib in water is examined using all-atom molecular dynamics simulations and corresponding experimental results from FESEM experiments. In addition, a series of dipeptides with a similar chemical formula to Bortezomib with hydrogel-forming ability are being investigated for their propensity to bind to the drug molecule. Dipeptides are divided into two classes, the protected FF (Fmoc-FF and Z-FF) and the LF-based (Cyclo-LF and LF) ones. The thermodynamic stability of the complexes formed in an aqueous environment, as well as key morphological features of the nanoassemblies are investigated at the molecular level. Binding enthalpy between Bortezomib and dipeptides follows the increasing order: LF < Cyclo-LF < Fmoc-FF < Z-FF under both van der Waals and electrostatic contributions. Protected FF dipeptides have a higher affinity for the drug molecule, which will favor its entrapment, giving them an edge over the LF based dipeptides. By evaluating the various measures, regarding both the binding between the two components and the eventual ability of controlled drug release, we conclude that the protected FF class is a more suitable candidate for drug release of Bortezomib, whereas among its two members, Fmoc-FF appears to be more promising. The selection of the optimal candidates based on the present computational study will be a stepping stone for future detailed experimental studies involving the encapsulation and controlled release of Bortezomib both in vitro and in vivo.
Collapse
Affiliation(s)
- Peter Divanach
- Department of Materials Science and Technology, University of Crete, Voutes Campus Greece, Crete, Greece.
- Institute of Electronic Structure and Laser/Foundation for Research and Technology-Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Eirini Fanouraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus Greece, Crete, Greece.
- Institute of Electronic Structure and Laser/Foundation for Research and Technology-Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus Greece, Crete, Greece.
- Institute of Electronic Structure and Laser/Foundation for Research and Technology-Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece.
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anastassia N Rissanou
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece.
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
5
|
A multi-bioresponsive self-assembled nano drug delivery system based on hyaluronic acid and geraniol against liver cancer. Carbohydr Polym 2023; 310:120695. [PMID: 36925236 DOI: 10.1016/j.carbpol.2023.120695] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Herein, a multi-bioresponsive self-assembled nano-drug delivery system (HSSG) was constructed by conjugating the anticancer drug Geraniol (GER) to hyaluronic acid (HA) via a disulfide bond. The HSSG NPs displayed a uniform spherical shape with an average diameter of ∼110 nm, maintained high stability, and realized controlled drug release in the tumor microenvironment (pH/glutathione/hyaluronidase). Results of fluorescence microscopy and flow cytometry verified that HSSG NPs were selectively uptaken by human hepatocellular carcinoma cell lines HepG2 and Huh7 via CD44 receptor-mediated internalization. Studies on H22 tumor-bearing mice demonstrate that HSSG NPs could effectively accumulate at the tumor site for a long period. In vitro and in vivo studies show that HSSG NPs significantly promoted the death of cancer cells while reducing the toxicity as compared to GER. Therefore, the HSSG NPs have great potential in the treatment of tumors.
Collapse
|
6
|
Sun P, Qu F, Zhang C, Cheng P, Li X, Shen Q, Li D, Fan Q. NIR-II Excitation Phototheranostic Platform for Synergistic Photothermal Therapy/Chemotherapy/Chemodynamic Therapy of Breast Cancer Bone Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204718. [PMID: 36216756 PMCID: PMC9685450 DOI: 10.1002/advs.202204718] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Indexed: 05/23/2023]
Abstract
To improve bone metastases treatment efficacy, current strategies are focused on the integration of chemotherapy with phototheranostic. However, the success of phototheranostic approaches is hampered by the limited tissue penetration depth of near-infrared-I (NIR-I) light (700-900 nm). In this study, a NIR-II (1000-1700 nm) excitation phototheranostic (BTZ/Fe2+ @BTF/ALD) is presented for NIR-II fluorescence imaging and NIR-II photoacoustic imaging-guided NIR-II photothermal therapy (PTT), chemotherapy, and chemodynamic therapy (CDT) of breast cancer bone metastases. This phototheranostic is developed by integrating a dopamine-modified NIR-II absorbing donor-acceptor-donor small molecule (BBT-FT-DA), the boronate anticancer drug bortezomib (BTZ), and Fe2+ ions, as CDT catalysts, into an amphiphilic PEGylated phospholipid modified with the bone-targeting ligand alendronate. In acidic and hydrogen peroxide (H2 O2 ) over expression tumor microenvironment, the boronate-catechol linkage is cleaved and BTZ and Fe2+ ions are released to initiate the Fenton reaction, that is, chemotherapy and CDT, respectively, are initialized. It is confirmed using the murine 4T1 bone metastasis model that BTZ/Fe2+ @BTF/ALD significantly suppresses the progression of tumor cells in the bone tissue via a synergistic NIR-II PTT/chemotherapy/CDT effect. Overall, this work provides fresh insights to guide the development of NIR-II phototheranostics for breast cancer bone metastases.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Fan Qu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Chi Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Pengfei Cheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xiangyu Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| | - Daifeng Li
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced MaterialsJiangsu Key Laboratory for BiosensorsNanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|
7
|
Ali AA, Al-Othman A, Al-Sayah MH. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022; 351:476-503. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
8
|
Niu J, Yuan M, Liu Y, Wang L, Tang Z, Wang Y, Qi Y, Zhang Y, Ya H, Fan Y. Silk peptide-hyaluronic acid based nanogels for the enhancement of the topical administration of curcumin. Front Chem 2022; 10:1028372. [PMID: 36199664 PMCID: PMC9527322 DOI: 10.3389/fchem.2022.1028372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The present study focused on the development of Cur-loaded SOHA nanogels (Cur-SHNGs) to enhance the topical administration of Cur. The physiochemical properties of Cur-SHNGs were characterized. Results showed that the morphology of the Cur-SHNGs was spherical, the average size was 171.37 nm with a zeta potential of −13.23 mV. Skin permeation experiments were carried out using the diffusion cell systems. It was found that the skin retention of Cur-SHNGs was significantly improved since it showed the best retention value (0.66 ± 0.17 μg/cm2). In addition, the hematoxylin and eosin staining showed that the Cur-SHNGs improved transdermal drug delivery by altering the skin microstructure. Fluorescence imaging indicated that Cur-SHNGs could effectively deliver the drug to the deeper layers of the skin. Additionally, Cur-SHNGs showed significant analgesic and anti-inflammatory activity with no skin irritation. Taken together, Cur-SHNGs could be effectively used for the topical delivery of therapeutic drugs.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Ming Yuan
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yao Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Liye Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Zigui Tang
- Department of Pharmacy, Henan Medical College, Zhengzhou, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Yihan Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yueheng Qi
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | | | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Yanli Fan
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
9
|
Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release. Carbohydr Polym 2022; 283:119154. [DOI: 10.1016/j.carbpol.2022.119154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/28/2022]
|
10
|
Pandey N, Soto-Garcia L, Yaman S, Kuriakose A, Rivera AU, Jones V, Liao J, Zimmern P, Nguyen KT, Hong Y. Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. BIOMATERIALS ADVANCES 2022; 134:112589. [PMID: 35525749 PMCID: PMC9753139 DOI: 10.1016/j.msec.2021.112589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Bioadhesives are intended to facilitate the fast and efficient reconnection of tissues to restore their functionality after surgery or injury. The use of mussel-inspired hydrogel systems containing pendant catechol moieties is promising for tissue attachment under wet conditions. However, the adhesion strength is not yet ideal. One way to overcome these limitations is to add polymeric nanoparticles to create nanocomposites with improved adhesion characteristics. To further enhance adhesiveness, polydopamine nanoparticles with controlled size prepared using an optimized process, were combined with a mussel-inspired hyaluronic acid (HA) hydrogel to form a nanocomposite. The effects of sizes and concentrations of polydopamine nanoparticles on the adhesive profiles of mussel-inspired HA hydrogels were investigated. Results show that the inclusion of polydopamine nanoparticles in nanocomposites increased adhesion strength, as compared to the addition of poly (lactic-co-glycolic acid) (PLGA), and PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles. A nanocomposite with demonstrated cytocompatibility and an optimal lap shear strength (47 ± 3 kPa) was achieved by combining polydopamine nanoparticles of 200 nm (12.5% w/v) with a HA hydrogel (40% w/v). This nanocomposite adhesive shows its potential as a tissue glue for biomedical applications.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andres Urias Rivera
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Valinda Jones
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Zhang M, Yu H, Hu J, Zhao Z, Liu L, Yang G, Wang T, Han G, Song S. Therapeutic carrier based on solanesol and hyaluronate for synergistic tumor treatment. Int J Biol Macromol 2022; 201:20-28. [PMID: 34998870 DOI: 10.1016/j.ijbiomac.2021.12.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022]
Abstract
The administration of nanodrugs can lead to metabolism related systemic toxicity due to the use of inert carriers in large quantities. Carrier materials that offer therapeutic effects are therefore a promising means of addressing this limitation. Herein, a hyaluronate-based nanocarrier was prepared from hyaluronic acid (HA) and solanesol. Solanesyl thiosalicylate (STS) derived from solanesol has certain antitumor effects and was used to modify HA. The conjugate (HA-STS) self-assembled into nanoparticles acting as a drug carrier. The synthesis of the conjugates was confirmed by 1H NMR spectroscopy. Doxorubicin (DOX) was loaded into the HA-STS nanoparticles with a relatively high content of 6.0%. pH-sensitive drug release behavior was achieved by introducing a hydroazone bond between STS and HA. A cytotoxicity assay indicated that the blank nanoparticles had an antitumor effect, which was enhanced by loading with an additional drug. Moreover, in vivo antitumor experiments indicated that the HA-STS-DOX showed superior tumor inhibition compared with free DOX, as well as lower cardiotoxicity and hepatotoxicity, demonstrating the advantages of the bioactive drug vehicles in cancer therapy.
Collapse
Affiliation(s)
- Mengying Zhang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Huimin Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinglu Hu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Zhengyu Zhao
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Liu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Gaomin Yang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Tingli Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Guang Han
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shiyong Song
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
12
|
Liu J, Zhao R, Jiang X, Li Z, Zhang B. Progress on the Application of Bortezomib and Bortezomib-Based Nanoformulations. Biomolecules 2021; 12:biom12010051. [PMID: 35053199 PMCID: PMC8773474 DOI: 10.3390/biom12010051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Bortezomib (BTZ) is the first proteasome inhibitor approved by the Food and Drug Administration. It can bind to the amino acid residues of the 26S proteasome, thereby causing the death of tumor cells. BTZ plays an irreplaceable role in the treatment of mantle cell lymphoma and multiple myeloma. Moreover, its use in the treatment of other hematological cancers and solid tumors has been investigated in numerous clinical trials and preclinical studies. Nevertheless, the applications of BTZ are limited due to its insufficient specificity, poor permeability, and low bioavailability. Therefore, in recent years, different BTZ-based drug delivery systems have been evaluated. In this review, we firstly discussed the functions of proteasome inhibitors and their mechanisms of action. Secondly, the properties of BTZ, as well as recent advances in both clinical and preclinical research, were reviewed. Finally, progress in research regarding BTZ-based nanoformulations was summarized.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-636-8462490
| |
Collapse
|