1
|
Liu L, Wang H, Li X, Zhang L, Zhang X, Xu X. Purification and structural characterization of a neutral polysaccharide from Boletus auripes using self-made quaternary chitosan cryogel. Int J Biol Macromol 2024; 291:139091. [PMID: 39716703 DOI: 10.1016/j.ijbiomac.2024.139091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The purification of polysaccharides is an essential preliminary step in determining their chemical structure, although it presents significant challenges. In this research, a macro-porous monolith of quaternary chitosan cryogel was synthesized for the purification of a neutral polysaccharide from Boletus auripes. A homogeneous neutral polysaccharide (BAP-1a1) with a weight-average molecular weight of 4.13 × 105 Da and a polydispersity index of 1.28 was successfully isolated. The structure of BAP-1a1 was elucidated through a comprehensive characterization utilizing size exclusion chromatography (SEC) combined with laser light scattering (LLS), infrared spectroscopy, monosaccharide composition analysis, methylation analysis, and nuclear magnetic resonance (NMR) spectroscopy. The results revealed that the BAP-1a1 was characterized as a glucan with a backbone structure consisting of 1,4-α-D-Glcp and 1,3-β-D-Glcp glycosidic linkages in a molar ratio of 2:1. Additionally, a minority of branched chains of 1-α-D-Glcp are attached to 1,3-β-D-Glcp residues at the C6 position. In vitro antioxidant activity assays demonstrated that BAP-1a1 exhibits a dose-dependent scavenging effect on ABTS and DPPH radicals with EC50 values of 0.58 and 1.04 mg/mL, respectively. These findings indicated that Boletus auripes possesses the potential to be utilized as a natural agent in antioxidant functional foods.
Collapse
Affiliation(s)
- Li Liu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Haidi Wang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Xuan Li
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Xufeng Zhang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Jing Y, Li M, Li Y, Ma T, Qu Y, Hu B, Xie Y, Li Z. Structural characterization and anti-fatigue mechanism based on the gut-muscle axis of a polysaccharide from Zingiber officinale. Int J Biol Macromol 2024; 283:137621. [PMID: 39547625 DOI: 10.1016/j.ijbiomac.2024.137621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This study aimed to characterize the structure of polysaccharide ZOPA extracted from Zingiber officinale and its purified form (ZOPA-1), and to investigate their anti-fatigue mechanisms based on the gut-muscle axis. The study found that the backbone of ZOPA-1 is primarily composed of →3,4)-α-Glcp-1→ and →4,6)-α-Glcp-(1→ linkages, with →4)-α-Glcp(1→ serving as its side chain. In exhaustive swimming experiments with mice, both crude ZOPA and purified ZOPA-1 demonstrated significant anti-fatigue effects, including enhanced glycogen storage, improved antioxidant capacity, reduced accumulation of metabolic waste products, and regulated energy metabolism in the gastrocnemius muscles. These effects may be mediated through the activation of the Keap1-Nrf2/ARE and AMPK/PGC-1α signaling pathways. Furthermore, ZOPA and ZOPA-1 modulated the intestinal flora of mice, increasing diversity, altering abundance, and regulating short-chain fatty acid concentrations, suggesting a potential role of the gut-muscle axis in mediating the anti-fatigue effects. This study provides valuable insights into the complex interplay between polysaccharides, the gut-muscle axis, and exercise-induced fatigue.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China.
| | - Mingsong Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yingqi Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Teng Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Ying Qu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yinghua Xie
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Zhiwei Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Zeng S, Wang B, Lv W, Li B, Xiao H, Lin R. Physicochemical properties, structure and biological activity of ginger polysaccharide: Effect of microwave infrared dual-field coupled drying. Int J Biol Macromol 2024; 281:136474. [PMID: 39401618 DOI: 10.1016/j.ijbiomac.2024.136474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Ginger was dried by microwave infrared dual-field coupled drying (MIDFCD). The composition, structure, physicochemical properties and biological activity of ginger polysaccharides at various stages of MIDFCD were investigated. The MIDFCD significantly impacted the chemical composition, molecular weight (Mw), microstructure, and physicochemical properties of ginger polysaccharides. However, there were no notable differences in functional group composition. The Mw and chemical composition were notably influenced by microwave-infrared exposure and prolonged drying time. The degradation of polysaccharides due to high temperatures in the later stage resulted in further decreases in Mw and alterations in monosaccharide composition. These changes in chemical composition and Mw affected thermal properties, crystallization properties, particle size, rheological properties, antioxidant capacity, and hypoglycemic activity. These findings suggest that MIDFCD enhances the quality and bioactivity of natural polysaccharides. This study offers theoretical support for MIDFCD processing and the value-added utilization of ginger.
Collapse
Affiliation(s)
- Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Bingzheng Li
- Guangxi Key laboratory of Microwave Advanced Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Rongru Lin
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Li W, Liu S, Wang S, Li Y, Kong D, Wang A. A single origin and high genetic diversity of cultivated medicinal herb Glehnia littoralis subsp. littoralis (Apiaceae) deciphered by SSR marker and phenotypic analysis. PLoS One 2024; 19:e0308369. [PMID: 39116119 PMCID: PMC11309482 DOI: 10.1371/journal.pone.0308369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Ten SSR markers based on transcriptome sequencing were employed to genotype 231 samples of G. littoralis subsp. littoralis (Apiaceae) from nine cultivated populations and seven wild populations, aiming to assess the genetic diversity and genetic structure, and elucidate the origin of the cultivated populations. Cultivated populations exhibited relatively high genetic diversity (h = 0.441, I = 0.877), slightly lower than that of their wild counterparts (h = 0.491, I = 0.930), likely due to recent domestication and ongoing gene flow between wild and cultivated germplasm. The primary cultivated population in Shandong have the crucial genetic status. A single origin of domestication was inferred through multiple analysis, and wild populations from Liaoning and Shandong are inferred to be potentially the ancestor source for the present cultivated populations. Phenotypic analysis revealed a relatively high heritability of root length across three growth periods (0.683, 0.284, 0.402), with significant correlations observed between root length and petiole length (Pearson correlation coefficient = 0.30, P<0.05), as well as between root diameter and leaf area (Pearson correlation coefficient = 0.36, P<0.01). These parameters can serve as valuable indicators for monitoring the developmental progress of medicinal plants during field management. In summary, this study can shed light on the intricate genetic landscape of G. littoralis subsp. littoralis, providing foundational insights crucial for conservation strategies, targeted breeding initiatives, and sustainable management practices in both agricultural and natural habitats.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shuliang Liu
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Shimeng Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Yihui Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Dongrui Kong
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| |
Collapse
|
5
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
6
|
Camilleri E, Blundell R, Baral B, Karpiński TM, Aruci E, Atrooz OM. Unveiling the full spectrum of maitake mushrooms: A comprehensive review of their medicinal, therapeutic, nutraceutical, and cosmetic potential. Heliyon 2024; 10:e30254. [PMID: 38707308 PMCID: PMC11068609 DOI: 10.1016/j.heliyon.2024.e30254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
This literature review provides an up-to-date exploration of the multifaceted attributes of maitake mushrooms (Grifola frondosa), elucidating their bioactive phytochemicals and diverse health advantages, including their substantial role in supporting human health and potential incorporation into the medicinal industry. Carbohydrates and protein are the major constituents contributing to the dry weight of G. frondosa, taking up around 70-80 % and 13-21 %, respectively, with emerging research linking these constituents to various health benefits. By synthesising current research findings, this review emphasises the substantial role of maitake mushrooms in supporting human health and underscores their potential incorporation into the medicinal industry. To further advance our understanding, future research should delve into the mechanisms underlying their health-promoting effects, with a focus on conducting quantitative studies to elucidate physiological pathways and potential drug interactions. Additionally, exploring their integration into functional foods or nutraceuticals through quantitative assessments of bioavailability and efficacy will be crucial for maximising their therapeutic benefits. This review aims to provide comprehensive insights, catalysing further research and innovation in utilising maitake mushrooms for improved well-being and industry advancement.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Imsida, Malta
| | - Bikash Baral
- Institute of Biological Resources (IBR), Kathmandu, Nepal
- University of Helsinki, Helsinki, Finland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland
| | - Edlira Aruci
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M. Atrooz
- Department of Biological Sciences, Mutah University, P.O.Box(7), Mutah, Jordan
| |
Collapse
|
7
|
Liu W, Li K, Zhang H, Li Y, Lin Z, Xu J, Guo Y. An antitumor arabinan from Glehnia littoralis activates immunity and inhibits angiogenesis. Int J Biol Macromol 2024; 263:130242. [PMID: 38368974 DOI: 10.1016/j.ijbiomac.2024.130242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Glehnia littoralis is an edible plant with significant medicinal value. To further elucidate the potential functional components for developing antitumor agents or functional foods, the polysaccharides in this plant were investigated, and a homogeneous polysaccharide, GLP90-2, was obtained through extraction and ethanol precipitation. By employing methylation, GC-MS, FT-IR, and NMR analysis, GLP90-2 was identified as an arabinan having a molecular weight of 7.76 × 103 g/mol and consisting of three types of residues: α-l-Araf-(1→, →5)-α-l-Araf-(1→, and →3,5)-α-l-Araf-(1→. The subsequent functional analysis revealed that GLP90-2 suppressed tumor development and metastasis in a zebrafish model. Mechanistic studies have shown that GLP90-2 promoted the maturation of DC2.4 cells and macrophages and enhanced the expression of immune-related cytokines, which may be attributed to the interaction between GLP90-2 and TLR-4. Additionally, GLP90-2 exhibited a strong interaction with PD-1, contributing to the activation of immunity. Furthermore, GLP90-2 suppressed angiogenesis in the transgenic zebrafish model, and this impact may be ascribed to the modulation of the VEGF/VEGFR-2 signaling pathway. All the results indicate that GLP90-2 demonstrates a strong tumor immunotherapy effect in vivo and has high potential for development.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Kexin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
8
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
9
|
Bi S, Jing Y, Cui X, Gong Y, Zhang J, Feng X, Shi Z, Zheng Q, Li D. A novel polysaccharide isolated from Coriolus versicolor polarizes M2 macrophages into an M1 phenotype and reversesits immunosuppressive effect on tumor microenvironment. Int J Biol Macromol 2024; 259:129352. [PMID: 38218293 DOI: 10.1016/j.ijbiomac.2024.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Converting M2 macrophages into an M1 phenotype in the tumor microenvironment, provides a new direction for tumor treatment. Here, we further report CVPW-1, a new polysaccharide of 1.03 × 106 Da that was isolated from Coriolus versicolor. Its monosaccharide was composed of mannose, glucose, and galactose at a ratio of 1.00:8.73:1.68. The backbone of CVPW-1 was composed of (1 → 3)-linked α-D-Glcp residues and (1 → 3,6)-linked α-D-Glcp residues that branched at O-6. The branch consisted of (1 → 6)-linked α-D-Glcp residues and (1 → 4)-linked α-D-Glap, and some branches were terminated with (1→)-linked β-D-Manp residues according to the results of HPLC, FT-IR, GC-MS, 1D and 2D NMR. Meanwhile, CVPW-1 could polarize M2 macrophages to M1 phenotypein vitro by binding to TLR4 and inducing the activation of Akt, JNK and NF-κB. This process involved reversing the functional inhibition of CD8+ T lymphocytes by inhibiting the expression of TREM2 in M2 macrophages. The in vivo experiments showed that oral administration of CVPW-1 could inhibit the growth of tumor in mice and polarize TAMs to M1 phenotype. Thus, the novel polysaccharide CVPW-1 from Coriolus versicolor might activate a variety of immune cells and then play an anti-tumor role. These results demonstrated that CVPW-1 could be developed as a potential immuno-oncology treatment reagent.
Collapse
Affiliation(s)
- Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, PR China
| | - Xuehui Cui
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yitong Gong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Junli Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Xiaofei Feng
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Zhen Shi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China.
| |
Collapse
|
10
|
Li HF, Pan ZC, Chen JM, Zeng LX, Xie HJ, Liang ZQ, Wang Y, Zeng NK. Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities. Int J Biol Macromol 2024; 254:127579. [PMID: 37918606 DOI: 10.1016/j.ijbiomac.2023.127579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Silver nanoparticles (AgNPs) by green synthesis from fungi polysaccharides are attracting increasing attention owing to their distinctive features and special applications in numerous fields. In this study, a cost-effective and environmentally friendly biosynthesizing AgNPs method with no toxic chemicals involved from the fruiting body polysaccharide of Phlebopus portentosus (PPP) was established and optimized by single factor experiment and response surface methodology. The optimum synthesis conditions of polysaccharide-AgNPs (PPP-AgNPs) were identified to be the reaction time of 140 min, reaction temperature of 94 °C, and the PPP: AgNO3 ratio of 1:11.5. Formation of PPP-AgNPs was indicated by visual detection of colour change from yellowish to yellowish brown. PPP-AgNPs were characterized by different methods and further evaluated for biological activities. That the Ultraviolet-visible (UV-Vis.) spectroscopy displayed a sharp absorption peak at 420 nm confirmed the formation of AgNPs. Fourier transform infrared (FTIR) analysis detected the presence of various functional groups. The lattice indices of (111), (200), (220), and (331), which indicated a faced-centered-cubic of the Ag crystal structure of PPP-AgNPs, was confirmed by X-ray diffraction (XRD) and the particles were found to be spherical through high resolution transmission electron microscopy (HRTEM). Energy dispersive X-ray spectroscopy (EDS) determined the presence of silver in PPP-AgNPs. The percentage relative composition of elements was determined as silver (Ag) 82.5 % and oxygen (O) 17.5 % for PPP-AgNPs, and did not exhibit any nitrogen peaks. The specific surface area of PPP-AgNPs was calculated to be 0.5750 m2/g with an average pore size of 24.33 nm by BET analysis. The zeta potential was -4.32 mV, which confirmed the stability and an average particle size of 64.5 nm was calculated through dynamic light scattering (DLS). PPP-AgNPs exhibited significant free radical scavenging activity against DPPH with an IC50 value of 0.1082 mg/mL. The MIC values of PPP-AgNPs for E. coli, S. aureus, C. albicans, C. glabrata, and C. parapsilosis are 0.05 mg/mL. The IC50 value of the inhibition of PPP-AgNPs against α-glucosidase was 11.1 μg/mL, while the IC50 values of PPP-AgNPs against HepG2 and MDA-MB-231 cell lines were calculated to be 14.36 ± 0.43 μg/mL and 40.05 ± 2.71 μg/mL, respectively. According to the evaluation, it can be concluded that these green-synthesized and eco-friendly PPP-AgNPs are helpful to improve therapeutics because of significant antioxidant, antimicrobial, antidiabetic, and anticancer properties to provide new possibilities for clinic applications.
Collapse
Affiliation(s)
- Hong-Fu Li
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zhang-Chao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Jiao-Man Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Lei-Xia Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hui-Jing Xie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Zhi-Qun Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; College of Science, Hainan University, Haikou 570228, China
| | - Yong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
11
|
Jiang Z, Song Z, Cao C, Yan M, Liu Z, Cheng X, Wang H, Wang Q, Liu H, Chen S. Multiple Natural Polymers in Drug and Gene Delivery Systems. Curr Med Chem 2024; 31:1691-1715. [PMID: 36927424 DOI: 10.2174/0929867330666230316094540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.
Collapse
Affiliation(s)
- Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chen Cao
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhendong Liu
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Xingbo Cheng
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Hongbo Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, PR China
| | - Qingnan Wang
- Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, PR China
- Department of Orthopedics, Henan Provincial People's Hospital, 450003, PR China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
12
|
Li S, Xu N, Fang Q, Cheng X, Chen J, Liu P, Li L, Wang C, Liu W. Glehnia littoralis Fr. Schmidtex Miq.: A systematic review on ethnopharmacology, chemical composition, pharmacology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116831. [PMID: 37369334 DOI: 10.1016/j.jep.2023.116831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glehnia littoralis Fr. Schmidtex Miq. is a well-known perennial herb that is used in traditional medicine in China, Japan and Korea. G. littoralis has the effects of treating the lungs with heat, nourishing yin and blood, and acting as an expectorant. Traditional Chinese medicine (TCM) prescriptions containing G. littoralis have various clinical applications, such as clearing heat, relieving coughs, treating hepatic fibrosis, resolving phlegm, and treating esophagitis. AIM OF THE REVIEW This paper aims to provide a comprehensive and productive review of G. littoralis, mainly including traditional application, ethnopharmacology, chemical composition, pharmacological activities, and quality control. MATERIALS AND METHODS Literature search was conducted through the Web of Science, ScienceDirect, Springer Link, PubMed, Baidu Scholar, CNKI, and WanFang DATA by using the keywords "Glehnia littoralis", "Radix Glehniae", "Bei Shashen", "Clinical application", "Chemical composition", "Quality control" and "pharmacological action". In addition, information was collected from relevant ancient books, reviews, and documents (1980-2022). RESULTS G. littoralis is a traditional Chinese herbal medicine with great clinical value and rich resources. More than 186 components, including coumarins, lignans, polyacetylenes, organic acids, flavonoids, and terpenoids, have been isolated and identified from G. littoralis. The pharmacological activities of more than half of these chemicals are yet unknown. Polyacetylenes and coumarins are the most important bioactive compounds responsible for pharmacological activities, such as antiproliferative, anti-oxidation, anti-inflammatory, antibacterial, antitussive, immune regulation and analgesic. In this study, the progress in chemical analysis of G. littoralis, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (MS), and HPLC-MS, were summarized. CONCLUSION In this paper reviewed the previous literature regarding ethnopharmacological, phytochemical, pharmacological, and quality evaluation of the processing of G. littoralis was reviewed, providing potential reference information for future investigation and clinical applications. However, research on the relationship between chemical constituents and traditional uses of G. littoralis is lacking, and the comprehensive pharmacological effects and mechanisms of G. littoralis require further detailed exploration. In addition, an efficient method for chemical profiling is still unavailable to obtain potent bioactive markers for quality control. Perfect quality standards, which are also the basis for further drug development of G. littoralis, are urgently needed to ensure its quality and clinical application.
Collapse
Affiliation(s)
- Shiyang Li
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Nan Xu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Qinqin Fang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Li Li
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Changhong Wang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| | - Wei Liu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
13
|
Jing Y, Su Z, Zhang S, Han Q, Wang Z, Hu B, Zhang D, Sun S, Wu L. Structural Characterization, Simulated Digestion and Anti-Aging Activities of an Acidic Polysaccharide from Salvia Miltiorrhiza. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01070-w. [PMID: 37249735 DOI: 10.1007/s11130-023-01070-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
An acidic polysaccharide (SMP) with a molecular weight (Mw) of 1.28 × 106 Da was isolated from Salvia miltiorrhiza. The monosaccharide composition in molar percentages was rhamnose (Rha): galacturonic acid (GalA): galactose (Gal): arabinose (Ara) = 6.15: 55.98: 21.27: 16.69. The results of simulated digestion in vitro showed that SMP was not degraded in saliva, gastric juice or intestinal juice. The Y maze test and new object recognition test showed that SMP could improve the working memory impairment of aging mice. SMP could also increase the activity of superoxide dismutase (SOD) and catalase (CAT) in serum and brain tissue, decrease the content of malondialdehyde (MDA), decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in brain tissue, and increase the content of short-chain fatty acids (SCFA) in the intestine. In addition, SMP could also regulate the intestinal flora structure, including increasing the relative abundance of Firmicutes and Bacteroidetes and decreasing the relative abundance of Proteobacteria. This work lays a foundation for the development of functional foods related to Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Ziteng Su
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Shilin Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Qiyuan Han
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Ziying Wang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, China.
| |
Collapse
|
14
|
Liu S, Gao J, Wang S, Li W, Wang A. Community differentiation of rhizosphere microorganisms and their responses to environmental factors at different development stages of medicinal plant Glehnia littoralis. PeerJ 2023; 11:e14988. [PMID: 36908810 PMCID: PMC9997192 DOI: 10.7717/peerj.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Rhizosphere microorganisms play a key role in affecting plant quality and productivity through its interaction with plant root system. To figure out the bottleneck of the decline of yield and quality in the traditional Chinese medicinal herbs Glehnia littoralis they now encounter, it is important to study the dynamics of rhizosphere microbiota during the cultivation of G. littoralis. In the present study, the composition, diversity and function of rhizosphere microbes at different development stages of G. littoralis, as well as the correlation between rhizosphere microbes and environmental factors were systematically studied by high-throughput sequencing. There were significant differences between the rhizosphere microbes at early and middle-late development stages. More beneficial bacteria, such as Proteobacteria, and more symbiotic and saprophytic fungi were observed at the middle-late development stage of G. littoralis, while beneficial bacteria such as Actinobacteria and polytrophic transitional fungi were abundant at all development stages. The results of redundancy analysis show that eight environmental factors drive the changes of microflora at different development stages. pH, soil organic matter (SOM) and available phosphorus (AP) had important positive effects on the bacterial and fungal communities at the early development stage; saccharase (SC) and nitrate nitrogen (NN) showed significant positive effects on the bacterial and fungal communities at the middle and late stages; while urease (UE), available potassium (AK), and alkaline phosphatase (AKP) have different effects on bacterial and fungal communities at different development stages. Random forest analysis identified 47 bacterial markers and 22 fungal markers that could be used to distinguish G. littoralis at different development stages. Network analysis showed that the rhizosphere microbes formed a complex mutualistic symbiosis network, which is beneficial to the growth and development of G. littoralis. These results suggest that host development stage and environmental factors have profound influence on the composition, diversity, community structure and function of plant rhizosphere microorganisms. This study provides a reference for optimizing the cultivation of G. littoralis.
Collapse
Affiliation(s)
- Shuliang Liu
- Ludong University, Yantai City, Shandong Province, China
| | - Jianxin Gao
- Ludong University, Yantai City, Shandong Province, China
| | - Shimeng Wang
- Ludong University, Yantai City, Shandong Province, China
| | - Weiwei Li
- Ludong University, Yantai City, Shandong Province, China
| | - Ailan Wang
- Ludong University, Yantai City, Shandong Province, China
| |
Collapse
|
15
|
Yang K, Liu J, Luo L, Li M, Xu T, Zan J. Synthesis of cationic β-cyclodextrin functionalized silver nanoparticles and their drug-loading applications. RSC Adv 2023; 13:7250-7256. [PMID: 36891497 PMCID: PMC9986802 DOI: 10.1039/d2ra08216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Silver nanoparticles have attracted great attention owing to their distinct physicochemical properties, which inspire the development of their synthesis methodology and their potential biomedical applications. In this study, a novel cationic β-cyclodextrin (C-β-CD) containing a quaternary ammonium group and amino group was applied as a reducing agent as well as a stabilizing agent to prepare C-β-CD modified silver nanoparticles (CβCD-AgNPs). Besides, based on the inclusion complexation between drug molecules and C-β-CD, the application of CβCD-AgNPs in drug loading was explored by the inclusion interaction with thymol. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy (UV-vis) and X-ray diffraction spectroscopy (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the prepared CβCD-AgNPs were well dispersed with particle sizes between 3-13 nm, and the zeta potential measurement result suggested that the C-β-CD played a role in preventing their aggregation in solution. 1H Nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared spectroscopy (FT-IR) revealed the encapsulation and reduction of AgNPs by C-β-CD. The drug-loading action of CβCD-AgNPs was demonstrated by UV-vis and headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS), and the results of TEM images showed the size increase of nanoparticles after drug loading.
Collapse
Affiliation(s)
- Ke Yang
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China +86-15629118698
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Junfeng Liu
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China +86-15629118698
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Laichun Luo
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China +86-15629118698
| | - Meilin Li
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China +86-15629118698
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Tanfang Xu
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China +86-15629118698
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Junfeng Zan
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China +86-15629118698
| |
Collapse
|
16
|
Zhou C, An K, Zhang X, Tong B, Liu D, Kong D, Bian F. Sporogenesis, gametophyte development and embryogenesis in Glehnia littoralis. BMC PLANT BIOLOGY 2023; 23:114. [PMID: 36823547 PMCID: PMC9948529 DOI: 10.1186/s12870-023-04105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Glehnia littoralis is an economic herb with both medicinal and edible uses. It also has important ecological value and special phylogenetic status as it is a monotypic genus species distributing around beach. Little information on its reproductive biology has been reported so far, which has hindered conservation and application of this species. In this study, we observed morphological changes from buds emergence to seeds formation and internal changes during sporogenesis, gametophyte development and embryo and endosperm development of G. littoralis using paraffin-embedded-sectioning and stereo microscope. RESULTS The results showed that the stages of internal development events of G. littoralis corresponded to obvious external morphological changes, most of developmental features were consistent with other Apiaceae species. The development of male and female gametophytes was not synchronized in the same flower, however, exhibited temporal overlap. From mid-late April to mid-May, the anther primordial and ovule primordial developed into the trinucleate pollen grain and eight-nuclear embryo sac, respectively. From late-May to mid-July, the zygote developed into mature embryo. In addition, some defects in gynoecium or ovule development and abnormal embryo and endosperm development were found. We induced that the possible causes of abortion in G. littoralis were as follows: nutrient limitation, poor pollination and fertilization, and bad weather. CONCLUSIONS This study revealed the whole process and morphological characteristics of the development of reproductive organ in G. littoralis, which not only provided important data for the study of systematic and conservation biology, but also provided a theoretical basis for cross breeding.
Collapse
Affiliation(s)
- Chunxia Zhou
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Kang An
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Xin Zhang
- College of Life Science, Yantai University, Yantai, 264005, China
| | - Boqiang Tong
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dan Liu
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dongrui Kong
- College of Life Science, Ludong University, Yantai, 264025, China.
| | - Fuhua Bian
- College of Life Science, Yantai University, Yantai, 264005, China.
| |
Collapse
|
17
|
The Synthesis, Characterization, and Protein-Release Properties of Hydrogels Composed of Chitosan-Zingiber offcinale Polysaccharide. Foods 2022; 11:foods11182747. [PMID: 36140875 PMCID: PMC9497755 DOI: 10.3390/foods11182747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Most proteins given orally have low bioavailability and are easily eliminated by rapid metabolism in vivo. In order to immobilize the drug at the site of administration and delay its release, a natural, gentle release system was designed. In this study, a heteropolysaccharide (ZOP) was isolated from Zingiber officinale using an ultrasonic assisted extraction method. ZOP Ara = 1.97: 1.15: 94.33: 1.48: 1.07. The ZOP/Chitosan (CS) composite hydrogel was synthesized using epichlorohydrin (ECH) as a cross-linking agent. The structure, morphology, and water-holding capacity of the composite hydrogel were characterized. The data showed that the addition of ZOP improved the hardness and water-holding capacity of the material. A swelling ratio test showed that the prepared hydrogel was sensitive to pH and ionic strength. In addition, the degradation rate of the hydrogel in a phosphate-buffered saline (PBS) solution with a pH value of 1.2 was higher than that in PBS with pH value of 7.4. Similarly, the release kinetics of Bovine serum albumin (BSA) showed higher release in an acidic system by the hydrogel composed of ZOP/CS. The hydrogel prepared by this study provided a good microenvironment for protein delivery. In summary, this composite polysaccharide hydrogel is a promising protein-drug-delivery material.
Collapse
|
18
|
Jing Y, Zhang H, Zhang R, Su L, Hu B, Zhang D, Zheng Y, Wu L. Multiple Fingerprint Profiles and Chemometrics Analysis of Polysaccharides From the Roots of Glehnia littoralis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The quality of polysaccharides from different regions was studied by using multiple fingerprint analysis and chemometric analysis. Polysaccharides from 10 batches of Glehnia littoralis were compared based on Fourier-transform infrared spectroscopy (FT-IR), high-performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and proton nuclear magnetic resonance (1H-NMR). According to the results, the 10 batches of polysaccharides from G littoralis had high similarity by analyzing HPLC, FT-IR, 1H-NMR, and GPC fingerprints. Through cluster analysis, samples and adulterants in different regions could be classified. Three monosaccharides (galactose, glucose, and galacturonic acid), molecular weights (4.33 × 105-4.91 × 105, 4.04 × 104-4.71 × 104, and 5.02 × 103-5.83 × 103), and H-1 (4.99, 5.39, and 5.42 ppm) of α-glucose could be used as markers for quality control of medicinal materials of the roots of G littoralis.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, PR China
| | - Hao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, PR China
| | - Ruijuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, PR China
| | - Lei Su
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, PR China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, PR China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, PR China
| | - Yuguang Zheng
- College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Lanfang Wu
- College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| |
Collapse
|
19
|
Jing Y, Cheng W, Ma Y, Zhang Y, Li M, Zheng Y, Zhang D, Wu L. Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Polysaccharide From Zingiber officinale and Its Application in Synthesis of Silver Nanoparticles. Front Nutr 2022; 9:917094. [PMID: 35719161 PMCID: PMC9204034 DOI: 10.3389/fnut.2022.917094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
A novel polysaccharide (ZOP) was extracted from Zingiber officinale with ultrasonic assisted extraction method. ZOP monosaccharide composition and mole ratio is GlcA: GalA: Glc: Gal: Ara = 1.97:1.15:94.33:1.48:1.07. Then, the particle size of ZOP-NPs prepared by nano-precipitation method was 230.5 nm, and the polydispersity index (PDI) was 0.260. Using ZOP and ZOP-NPs as reductants and stabilizers, ZOP-AgNPs and ZOP-NPs-AgNPs were prepared. They were characterized by ultraviolet-visible spectrophotometer (UV-Vis), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The silver chelation rate of polysaccharide silver nanoparticles (AgNPs) ranged from 68.70 to 82.12%. ZOP-AgNPs (0.5%, w/v; 1%, w/v) and ZOP-NPs-AgNPs (0.5%, w/v; 1%, w/v) exhibited a narrow particle size distribution of 31.1, 34.6, 25.1 and 27.6 nm, respectively. And the zeta potential values of them were−19.4,−21.6,−19.7,−23.8mV, respectively. The antioxidant and antibacterial activities of ZOP-NPs-AgNPs were superior to those of ZOP, ZOP-NPs and ZOP-AgNPs.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenjing Cheng
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yunfeng Ma
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yameng Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mingsong Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lanfang Wu
| |
Collapse
|
20
|
Ji X, Guo J, Pan F, Kuang F, Chen H, Guo X, Liu Y. Structural Elucidation and Antioxidant Activities of a Neutral Polysaccharide From Arecanut (Areca catechu L.). Front Nutr 2022; 9:853115. [PMID: 35340550 PMCID: PMC8948432 DOI: 10.3389/fnut.2022.853115] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
A novel neutral polysaccharide designated as PAP1b was isolated from Areca catechu L. by hot water extraction, ethanol precipitation, and column chromatography. PAP1b was mainly composed of mannose, galactose, xylose, and arabinose in a ratio of 4.1:3.3:0.9:1.7, with an average molecular weight of 37.3 kDa. Structural characterization indicated that the backbone of PAP1b appeared to be composed mainly of → 6-β-Manp-(1 →, → 4)-α-Galp-(1 → and → 3,6)-β-Manp-(1 →) residues with some branches, and terminal of (1 →)-linked-β-Manp residues. The results of bioactivity experiments showed that PAP1b had antioxidant in vitro, esspecially on scavenging DPPH and hydroxyl radicals. Therefore, the polysaccharide from Areca catechu L. could be used as a potential antioxidant in functional food.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jianhang Guo
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Feibing Pan
- Huachuang Institute of Areca Research-Hainan, Haikou, China
| | - Fengjun Kuang
- Hainan Kouweiwang Science and Technology Development Co., Ltd., Wanning, China
| | - Haiming Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xudan Guo
- Basic Medical College, Hebei University of Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei TCM Formula Preparation Technology Innovation Center, Shijiazhuang, China
- *Correspondence: Xudan Guo
| | - Yanqi Liu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
- Yanqi Liu
| |
Collapse
|
21
|
Optimization of technology, structural characterization, derivatization, antioxidant and immunomodulatory activities of Salvia miltiorrhiza polysaccharides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Tian J, Mao Q, Dong M, Wang X, Rui X, Zhang Q, Chen X, Li W. Structural Characterization and Antioxidant Activity of Exopolysaccharide from Soybean Whey Fermented by Lacticaseibacillus plantarum 70810. Foods 2021; 10:foods10112780. [PMID: 34829061 PMCID: PMC8621071 DOI: 10.3390/foods10112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
Soybean whey is a high-yield but low-utilization agricultural by-product in China. In this study, soybean whey was used as a substrate of fermentation by Lacticaseibacillus plantarum 70810 strains. An exopolysaccharide (LPEPS-1) was isolated from soybean whey fermentation by L. plantarum 70810 and purified by ion-exchange chromatography. Its preliminary structural characteristics and antioxidant activity were investigated. Results show that LPEPS-1 was composed of mannose, glucose, and galactose with molar ratios of 1.49:1.67:1.00. The chemical structure of LPEPS-1 consisted of →4)-α-D-Glcp-(1→, →3)-α-D-Galp-(1→ and →2)-α-D-Manp-(1→. Scanning electron microscopy (SEM) revealed that LPEPS-1 had a relatively rough surface. In addition, LPPES-1 exhibited strong scavenging activity against DPPH and superoxide radicals and chelating ability on ferrous ion. This study demonstrated that soybean whey was a feasible fermentation substrate for the production of polysaccharide from L. plantarum 70810 and that the polysaccharide could be used as a promising ingredient for health-beneficial functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Li
- Correspondence: ; Tel.: +86-25-8439-6989
| |
Collapse
|