1
|
Jana S, Dyna AL, Pal S, Mukherjee S, Bissochi IMT, Yamada-Ogatta SF, Darido MLG, Oliveira DBL, Durigon EL, Ray B, Faccin-Galhardi LC, Ray S. Anti-respiratory syncytial virus and anti-herpes simplex virus activity of chemically engineered sulfated fucans from Cystoseira indica. Carbohydr Polym 2024; 337:122157. [PMID: 38710573 DOI: 10.1016/j.carbpol.2024.122157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 μg/mL and low cytotoxicity at concentrations up to 500 μg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | - Andre Luiz Dyna
- Department of Microbiology, State University of Londrina, 86057-970 Londrina, PR, Brazil
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | | | | | | | - Danielle Bruna Leal Oliveira
- Laboratory of Clinical and Molecular Virology, University of São Paulo, 05508-000 São Paulo, SP, Brazil.; Albert Einstein Hospital, 05652-900 São Paulo, SP, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | | | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India.
| |
Collapse
|
2
|
Beato A, Haudecoeur R, Boucherle B, Peuchmaur M. Expanding Chemical Frontiers: Approaches for Generating Diverse and Bioactive Natural Product-Like Compounds Libraries from Extracts. Chemistry 2024; 30:e202304166. [PMID: 38372433 DOI: 10.1002/chem.202304166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.
Collapse
Affiliation(s)
- Aurélien Beato
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| |
Collapse
|
3
|
Ali I, Chemen ME, Piccini LE, Mukherjee S, Jana S, Damonte EB, Ray B, Garcia CC, Ray S. Chemically modified galactans of Grateloupia indica: From production to in vitro antiviral activity. Int J Biol Macromol 2024; 258:128824. [PMID: 38103665 DOI: 10.1016/j.ijbiomac.2023.128824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Herpes simplex viruses (HSVs) have an affinity for heparan sulfate proteoglycans on cell surfaces, which is a determinant for virus entry. Herein, several sulfated galactans that mimic the active domain of the entry receptor were employed to prevent HSV infection. They were produced from Grateloupia indica using chlorosulfonic acid-pyridine (ClSO3H.Py)/N,N-dimethylformamide reagent (fraction G-402), SO3.Py/DMF reagent (G-403), or by aqueous extraction (G-401). These galactans contained varied molecular masses (33-55 kDa), and sulfate contents (12-20 %), and have different antiviral activities. Especially, the galactan (G-402) generated by using ClSO3H.Py/DMF, a novel reagent, exhibited the highest level of antiviral activity (EC50 = 0.36 μg/mL) compared to G-403 (EC50 = 15.6 μg/mL) and G-401 (EC50 = 17.9 μg/mL). This most active sulfated galactan possessed a linear chain containing β-(1 → 3)- and α-(1 → 4)-linked Galp units with sulfate group at the O-2/4/6 and O-2/3/6 positions, respectively. The HSV-1 and HSV-2 strains were specifically inhibited by this novel 33 ± 15 kDa galactan, which also blocked the virus from entering the host cell. These results highlight the significant potential of this sulfated galactan for antiviral research and drug development. Additionally, the reagent used for the effective conversion of galactan hydroxy groups to sulfate during extraction may also be useful for the chemical transformation of other natural products.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Mathias E Chemen
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Cybele C Garcia
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Wang P, Jing T, Hu Y, Chen X. Research Progress on Antiviral Activity of Heparin. Curr Med Chem 2024; 31:7-24. [PMID: 36740803 DOI: 10.2174/0929867330666230203124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2023]
Abstract
Heparin, as a glycosaminoglycan, is known for its anticoagulant and antithrombotic properties for several decades. Heparin is a life-saving drug and is widely used for anticoagulation in medical practice. In recent years, there have been extensive studies that heparin plays an important role in non-anticoagulant diseases, such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, anti-metastatic effects, and so on. Clinical observation and in vitro experiments indicate that heparin displays a potential multitarget effect. In this brief review, we will summarize heparin and its derivative's recently studied progress for the treatment of various viral infections. The aim is to maximize the benefits of drugs through medically targeted development, to meet the unmet clinical needs of serious viral diseases.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Yanqing Zhang
- Shandong VeriSign Test Detection Co., LTD, Jinan, China
| | - Ping Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Tianyuan Jing
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Hu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiushan Chen
- Zhenjiang Runjing High Purity Chemical Technology Co., Ltd., Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
6
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
7
|
Mohammadifar E, Gasbarri M, Cagno V, Achazi K, Tapparel C, Haag R, Stellacci F. Polyanionic Amphiphilic Dendritic Polyglycerols as Broad-Spectrum Viral Inhibitors with a Virucidal Mechanism. Biomacromolecules 2022; 23:983-991. [PMID: 34985867 DOI: 10.1021/acs.biomac.1c01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparin has been known to be a broad-spectrum inhibitor of viral infection for almost 70 years, and it has been used as a medication for almost 90 years due to its anticoagulant effect. This nontoxic biocompatible polymer efficiently binds to many types of viruses and prevents their attachment to cell membranes. However, the anticoagulant properties are limiting their use as an antiviral drug. Many heparin-like compounds have been developed throughout the years; however, the reversible nature of the virus inhibition mechanism has prevented their translation to the clinics. In vivo, such a mechanism requires the unrealistic maintenance of the concentration above the binding constant. Recently, we have shown that the addition of long hydrophobic linkers to heparin-like compounds renders the interaction irreversible while maintaining the low-toxicity and broad-spectrum activity. To date, such hydrophobic linkers have been used to create heparin-like gold nanoparticles and β-cyclodextrins. The former achieves a nanomolar inhibition concentration on a non-biodegradable scaffold. The latter, on a fully biodegradable scaffold, shows only a micromolar inhibition concentration. Here, we report that the addition of hydrophobic linkers to a new type of multifunctional scaffold (dendritic polyglycerol, dPG) creates biocompatible compounds endowed with nanomolar activity. Furthermore, we present an in-depth analysis of the molecular design rules needed to achieve irreversible virus inhibition. The most active compound (dPG-5) showed nanomolar activity against herpes simplex virus 2 (HSV-2) and respiratory syncytial virus (RSV), giving a proof-of-principle for broad-spectrum while keeping low-toxicity. In addition, we demonstrate that the virucidal activity leads to the release of viral DNA upon the interaction between the virus and our polyanionic dendritic polymers. We believe that this paper will be a stepping stone toward the design of a new class of irreversible nontoxic broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Katharina Achazi
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
8
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Sulfonated and Carboxymethylated β-Glucan Derivatives with Inhibitory Activity against Herpes and Dengue Viruses. Int J Mol Sci 2021; 22:ijms222011013. [PMID: 34681671 PMCID: PMC8538634 DOI: 10.3390/ijms222011013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The infection of mammalian cells by enveloped viruses is triggered by the interaction of viral envelope glycoproteins with the glycosaminoglycan, heparan sulfate. By mimicking this carbohydrate, some anionic polysaccharides can block this interaction and inhibit viral entry and infection. As heparan sulfate carries both carboxyl and sulfate groups, this work focused on the derivatization of a (1→3)(1→6)-β-D-glucan, botryosphaeran, with these negatively-charged groups in an attempt to improve its antiviral activity. Carboxyl and sulfonate groups were introduced by carboxymethylation and sulfonylation reactions, respectively. Three derivatives with the same degree of carboxymethylation (0.9) and different degrees of sulfonation (0.1; 0.2; 0.4) were obtained. All derivatives were chemically characterized and evaluated for their antiviral activity against herpes (HSV-1, strains KOS and AR) and dengue (DENV-2) viruses. Carboxymethylated botryosphaeran did not inhibit the viruses, while all sulfonated-carboxymethylated derivatives were able to inhibit HSV-1. DENV-2 was inhibited only by one of these derivatives with an intermediate degree of sulfonation (0.2), demonstrating that the dengue virus is more resistant to anionic β-D-glucans than the Herpes simplex virus. By comparison with a previous study on the antiviral activity of sulfonated botryosphaerans, we conclude that the presence of carboxymethyl groups might have a detrimental effect on antiviral activity.
Collapse
|