1
|
Dejene BK, Birilie AA, Yizengaw MA, Getahun SA. Thermoplastic starch-ZnO nanocomposites: A comprehensive review of their applications in functional food packaging. Int J Biol Macromol 2024; 282:137099. [PMID: 39486704 DOI: 10.1016/j.ijbiomac.2024.137099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The increasing demand for environmentally friendly food packaging solutions has driven extensive research on biodegradable materials, particularly thermoplastic starch (TPS), which is an eco-friendly alternative to petroleum-based plastics. Despite its eco-friendliness, TPS exhibits limitations, including inadequate mechanical and thermal properties, high water sensitivity, and low antibacterial activity. Although strategies such as chemical modification, blending, and compatibilizers have been employed to enhance TPS for functional packaging applications, they often fail to address these fundamental issues. A promising approach involves incorporating zinc oxide (ZnO) nanoparticles, which significantly improve the mechanical strength, thermal stability, and antimicrobial properties of TPS. This review focuses on TPS-ZnO nanocomposites, a notable subcategory of bio-nanocomposites recognized for their enhanced functional properties in food packaging applications. It discusses the synthesis and properties of these nanocomposites, particularly their mechanical, thermal, antimicrobial, and antioxidant properties. Moreover, this review explores the various applications of TPS-ZnO nanocomposites in active, intelligent, and sustainable food packaging, emphasizing their potential to address the pressing challenges of food waste and environmental impact.
Collapse
Affiliation(s)
- Bekinew Kitaw Dejene
- Department of Textile Engineering, Institute of Technology, Hawassa University, Hawassa, Ethiopia.
| | - Alehegn Atalay Birilie
- Department of Leather Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Megabi Adane Yizengaw
- Department of Leather Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shiferaw Asmammaw Getahun
- Department of Leather Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Zhu X, Li H, Cai L, Wu Y, Wang J, Xu S, Wang S, Wang H, Wang D, Chen J. ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging. iScience 2024; 27:110008. [PMID: 38989453 PMCID: PMC11233912 DOI: 10.1016/j.isci.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, China
| | - Henghui Li
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yixian Wu
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shangcheng Xu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
| | - Shoulin Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Daorong Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Jin Chen
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Brites P, Aguiar MIS, Gonçalves J, Ferreira P, Nunes C. Sustainable valorisation of bioactive molecules from rice husks through hydrothermal extraction for chitosan-based bioplastic production. Int J Biol Macromol 2024; 271:132489. [PMID: 38777004 DOI: 10.1016/j.ijbiomac.2024.132489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Rice husks are a low value byproduct, even though it possesses molecules with great potential, such as arabinoxylans, proteins, and silica. These molecules can be used to improve mechanical and physicochemical properties of materials for food packaging. In this work, hydrothermal treatment was used for a sustainable extraction of the valuable molecules present in rice husks. Various extraction temperatures (180, 200, and 220 °C) were performed targeting to extract fractions with distinct compositions. The water extract obtained at 220 °C demonstrated the highest extraction yield, 3 times superior to conventional hot water extraction. These extracts exhibited high content of proteins, phenolic compounds, and carbohydrates, particularly arabinoxylans. This extract was incorporated in chitosan-based films in different ratios, 1:0.1, 1:0.3, and 1:0.5 (chitosan:extract, w:v). The film with the lowest extract ratio presented the highest flexibility (higher elongation and lower Young's modulus) when compared to the pristine chitosan film. The antioxidant capacity was also increased, achieving an antioxidant capacity of >10-fold in comparison to control film. The results revealed that hydrothermal extraction emerges as an environmentally friendly and sustainable methodology for extracting valuable compounds from rice industry byproducts. This method exhibits significant potential to impart flexible and antioxidant properties to biobased materials.
Collapse
Affiliation(s)
- Paulo Brites
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana I S Aguiar
- Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Joana Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cláudia Nunes
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Gong D, Zhang X, Li J, Li Y, Guo J, Zhang X, Zhang W. Carbon dot/g-C 3N 4-mediated self-activated antimicrobial nanocomposite films for active packaging applications. Food Chem 2024; 438:137939. [PMID: 38006697 DOI: 10.1016/j.foodchem.2023.137939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/27/2023]
Abstract
A novel carbon dot/g-C3N4 nanocomposite (CCN) exhibiting enhanced photocatalytic activity was developed and used as a photoactive nanofiller to construct corn starch/carboxymethyl cellulose (CS/CMC)-based functional films. The morphologies and structures of the CCN-CS/CMC composite films were investigated with scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The effects of the CCN on the physicochemical properties and antibacterial activities of the films were analyzed. The properties of the films were optimized with the addition of CCN (0.20 mg/mL), and the tensile strength of the film was increased to 11.9 MPa and the water contact angle was increased to 103.39°. The optimal active film showed > 99.9 % antibacterial efficiencies against Escherichia coli and Staphylococcus aureus under visible light and prolonged the shelf lives of bananas for more than four days compared to the 4-day shelf life of the control. This work provides a novel route for developing antimicrobial active packaging.
Collapse
Affiliation(s)
- Dezhuang Gong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiaxu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jialiang Guo
- College of Life Sciences, Changchun Normal University, Changchun, Jilin 130032, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
5
|
Dong M, Bilotti E, Zhang H, Papageorgiou DG. Multifunctional Ti 3C 2T x MXene-reinforced thermoplastic starch nanocomposites for sustainable packaging solutions. Int J Biol Macromol 2024; 265:130520. [PMID: 38553390 DOI: 10.1016/j.ijbiomac.2024.130520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Starch-derived films exhibit significant potential for packaging applications owing to their low cost, biodegradable characteristics, and natural abundance. Nonetheless, there is a demand to enhance their mechanical properties and moisture resistance to broaden their use. In this study, high performing sorbitol-plasticized starch/Ti3C2Tx MXene nanocomposites, reinforced with ultra-low filler contents, were fabricated for the first time in literature. The MXene nanoplatelets were well-dispersed within the starch matrix while there was a tendency for the fillers to align in-plane, as revealed by polarized Raman spectroscopy. The produced nanocomposite films demonstrate remarkable effectiveness in blocking UV light, offering an additional valuable attribute in food packaging. The Young's modulus and tensile strength of starch films containing 0.75 wt% MXene increased from 439.9 and 11.0 MPa to 764.3 and 20.8 MPa, respectively. The introduction of 1 wt% MXene nanoplatelets reduced the water vapour permeability of starch films from 2.78 × 10-7 to 1.80 × 10-7 g/m h Pa due to the creation of highly tortuous paths for water molecules. Micromechanical theories were also implemented to understand further the reinforcing mechanisms in the biobased nanocomposites. The produced starch nanocomposites not only capitalize on the biodegradable and renewable nature of starch but also harness the unique properties of nanomaterials, paving the way for sustainable and high-performance packaging solutions that align with both consumer and environmental demands.
Collapse
Affiliation(s)
- Ming Dong
- School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Emiliano Bilotti
- Department of Aeronautics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Han Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
6
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
7
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Yan X, Liu R, Bai J, Wang Y, Fu J. Preparation of starch-palmitic acid complex nanoparticles and their effect on properties of the starch composite film. Int J Biol Macromol 2023; 251:126154. [PMID: 37544565 DOI: 10.1016/j.ijbiomac.2023.126154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The corn starch-palmitic acid complex nanoparticles and amylose-palmitic acid complex nanoparticles were prepared through complex and nanoprecipitation. Their mean size values were 138.2 nm and 654.7 nm, respectively, while the two kinds of complex nanoparticles were mainly showed V-type crystalline structure, the crystallinity of these complex nanoparticles was 20.86 % and 46.81 %. Then the starch composite films were prepared using the corn starch-palmitic acid complex nanoparticles and amylose-palmitic acid complex nanoparticles as reinforcement phases. The starch composite film reinforced with amylose-palmitic acid complex nanoparticles had the higher tensile strength and a better wettability with the water contact angle of 86.51°. Though the crystalline properties of starch composite films had no significant difference, the thermal stability improved when the amylose-palmitic acid complex nanoparticles used as reinforcement phase, the maximum thermal degradation temperature was 313 °C. This study provides a new type of reinforcement phase to improve the properties of starch composite films.
Collapse
Affiliation(s)
- Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Rui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jinlin Bai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yingxin Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jun Fu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
9
|
Zhang W, Zhou W, Zhang Z, Zhang D, Guo Z, Ren P, Liu F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers (Basel) 2023; 15:4015. [PMID: 37836064 PMCID: PMC10575191 DOI: 10.3390/polym15194015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Chitosan and its derivatives are widely used in food packaging, pharmaceutical, biotechnology, medical, textile, paper, agriculture, and environmental industries. However, the flexibility of chitosan films is extremely poor, which limits its relevant applications to a large extent. In this paper, chitosan/sorbitol/nano-silica (CS/sorbitol/SiO2) composite films were prepared by the casting film method using chitosan, sorbitol, Tween-80 and nano-SiO2 as raw materials. The structure of the films was characterized by infrared spectroscopy, electron scanning microscopy, and X-ray diffraction analysis. The effects of sorbitol and nano-silica dosage on the mechanical properties, thermal properties and water vapor barrier properties of the composite film were investigated. The results show that with the gradual increase in sorbitol (≤75 wt %), the elongation at the break of chitosan/sorbitol films significantly increased. When the addition of sorbitol was 75 wt %, the elongation at break of the chitosan/sorbitol composite film was 13 times higher than that of the chitosan film. Moreover, nano-SiO2 can further improve the mechanical properties and thermal stability of the chitosan/sorbitol composite films. When the amount of nano-silica was 4.5 wt %, the composite film became more flexible, with a maximum elongation of 90.8% (which is 14 times that of chitosan film), and its toughness increased to 10.52 MJm-3 (which is 6 times that of chitosan film). This study balances the tensile strength and elongation at break of the composite films by adding a plasticizer and nano-filler, providing a reference for the preparation of chitosan composites or their blending with other polymers, and has practical guiding significance for the industrial production of biomass plastics.
Collapse
Affiliation(s)
- Wei Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Wentao Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Zisen Zhang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China (D.Z.)
| | - Di Zhang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China (D.Z.)
| | - Zhengzheng Guo
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Penggang Ren
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (W.Z.); (W.Z.); (Z.G.)
| | - Fei Liu
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
10
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
11
|
Lin R, Chen H, Xu R, Liu B, Yuan C, Guo L, Liu P, Fang Y, Cui B. Green preparation of 3D micronetwork eugenol-encapsuled porous starch for improving the performance of starch-based antibacterial film. Int J Biol Macromol 2023; 241:124593. [PMID: 37116844 DOI: 10.1016/j.ijbiomac.2023.124593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
In order to find a non-enzymatically treated alternative wall material with effective encapsulation properties, and to reduce the use of conventional non-biodegradable plastics, a novel 3D-micronetwork porous starch (3D-MPS) was created via a modified sacrificial template method to encapsulate eugenol (3D-EMPS) and used to incorporate with TiO2-starch film, for significantly improving the performance of starch-based antibacterial film. At the template SiO2 nanoparticles concentration of 0.1 %, the 3D-MPS exhibited anticipated alveolate structure with internal aperture of approximately 10 μm confirmed by SEM. With addition of 3D-EMPS, higher tensile strength (29.70 Mpa) and water barrier property (924 g/cm2·24 h) of the composite film was obtained. Moreover, molecular docking technique was used to model the intermolecular forces, which showed that the major forces maintaining the internal bonding of the composite film were hydrogen bonding and the interaction between eugenol and 3D-MPS skeleton in 3D-EMPS. Meanwhile, the composite film demonstrated the expected eugenol retardation and antimicrobial capacity against S. aureus, E. coli, and B. subtilis. Finally, the composite films were used for evaluating the feasibility in the actual food, which largely extended its shelf life compared to the negative control. This high-performance film revealed their potential for packaging materials application.
Collapse
Affiliation(s)
- Ruikang Lin
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Huiyi Chen
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ruoxuan Xu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bo Liu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chao Yuan
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Li Guo
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Pengfei Liu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
12
|
Li Z, Li H, Wang M, Zhang Z, Yang L, Ma L, Liu H. Preparation and Properties of Poly(butylene adipate-co-terephthalate)/thermoplastic Hydroxypropyl Starch Composite Films Reinforced with Nano-Silica. Polymers (Basel) 2023; 15:polym15092026. [PMID: 37177174 PMCID: PMC10181392 DOI: 10.3390/polym15092026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The use of biodegradable plastics is gradually increasing, but its expensive cost limits promotion. In this study, poly(butylene adipate-co-terephthalate)/thermoplastic hydroxypropyl starch reinforced with nano-silica (PBAT/TPHSg-SiO2) composite films with high hydroxypropyl starch content were prepared in a two-step process. The effect of reinforced thermoplastic hydroxypropyl starch on the mechanical, thermal, processing properties, and micromorphology of the composite films was investigated. The results showed that the tensile strength of the composite films was significantly improved by the addition of nano-silica, with 35% increase in horizontal tensile strength and 21% increase in vertical tensile strength after the addition of 4 phr of nano-silica. When the content of thermoplastic hydroxypropyl starch reinforced with nano-silica (TPHSg-4SiO2) is 40%, the horizontal and vertical tensile strengths of the films are 9.82 and 12.09 MPa, respectively, and the elongation at break of the films is over 500%. Electron micrographs show that TPHSg-4SiO2 is better homogeneously dispersed in the PBAT and exhibits a bi-continuous phase structure at a TPHSg-4SiO2 content of 40%. In this study, the blowing PBAT/TPHSg-4SiO2 composite films effectively reduce the cost and still show better mechanical properties, which are suitable for packaging applications.
Collapse
Affiliation(s)
- Zehao Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Hui Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metal, School of Material Science and Engineer, Lanzhou University of Technology, Lanzhou 730050, China
| | - Muxi Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhongyan Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liting Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lijun Ma
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Hong Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
13
|
Sun X, Li Q, Wu H, Zhou Z, Feng S, Deng P, Zou H, Tian D, Lu C. Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15081959. [PMID: 37112108 PMCID: PMC10141166 DOI: 10.3390/polym15081959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qingye Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hejun Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| |
Collapse
|
14
|
Effect of sustained-release tea tree essential oil solid preservative on fresh-cut pineapple storage quality in modified atmospheres packaging. Food Chem 2023; 417:135898. [PMID: 36934707 DOI: 10.1016/j.foodchem.2023.135898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The quality and safety of fresh-cut pineapple deteriorate during handling and storage due to physicochemical and microbial changes, so its preservation has attracted extensive attention. This study prepared sustained-release tea tree essential oil (TTO) solid preservative (SP) with an encapsulation efficiency of 71.45% and applied it on fresh-cut pineapple in modified atmospheres packaging (MAP). Results showed that TTO adsorbed on nano silicon dioxide (SiO2) was embedded in the starch-carboxymethyl cellulose network structure by extrusion. The hydrogen bond and hydrophobic interaction resulted in compact structure and good sustained-release performance of SP. The SP improved sensory quality and reduced nutrient loss and microbial spoilage of fresh-cut pineapple, which extended its shelf-life to four days. In addition, antioxidant capacity was enhanced with increasing antioxidant enzyme activity, antioxidant content, and 2,2-diphenyl-1-picrylhydrazine scavenging capacity and decreasing MDA accumulation. Therefore, sustained-release TTO solid preservative has potential for the preservation of fresh-cut pineapple.
Collapse
|
15
|
Yang N, Zou F, Tao H, Guo L, Cui B, Fang Y, Lu L, Wu Z, Yuan C, Zhao M, Liu P, Dong D, Gao W. Effects of primary, secondary and tertiary structures on functional properties of thermoplastic starch biopolymer blend films. Int J Biol Macromol 2023; 236:124006. [PMID: 36907303 DOI: 10.1016/j.ijbiomac.2023.124006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
To better understand the correlation between structure and properties in thermoplastic starch biopolymer blend films, the effects of amylose content, chain length distribution of amylopectin and molecular orientation of thermoplastic sweet potato starch (TSPS) and thermoplastic pea starch (TPES) on microstructure and functional properties of thermoplastic starch biopolymer blend films were studied. After thermoplastic extrusion, the amylose contents of TSPS and TPES decreased by 16.10 % and 13.13 %, respectively. The proportion of the chains with the degree of polymerization between 9 and 24 of amylopectin in TSPS and TPES increased from 67.61 % to 69.50 %, and from 69.51 % to 71.06 %, respectively. As a result, the degree of crystallinity and molecular orientation of TSPS and TPES films increased as compared to sweet potato starch and pea starch films. The thermoplastic starch biopolymer blend films possessed a more homogeneous and compacter network. The tensile strength and water resistance of thermoplastic starch biopolymer blend films increased significantly, whereas thickness and elongation at break of thermoplastic starch biopolymer blend films decreased significantly.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
16
|
Li B, Liu G, Tang X, Zhang H, Gao X. Facile preparation of all cellulose composite with excellent mechanical and antibacterial properties via partial dissolution of corn-stalk biomass. Int J Biol Macromol 2023; 228:89-98. [PMID: 36565828 DOI: 10.1016/j.ijbiomac.2022.12.212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
All-cellulose composite (ACC) was directly fabricated by the partial-dissolution welding of cellulose microfibers from agro-residual corn stalks treated with low-concentration ZnCl2 solvent (10-40 %). The solvent infiltrated deeply into nano/micro-scaled pores of cellulose fibers to facilitate the free migration of the disordered chains among the cellulose network while leaving the fiber core undissolved. Then, these disordered chains would entangle and regenerate to serve as a welded layer to bond the undissolved microfibril core in the solvent removal process. Such welding achieved exceptional mechanical (the tensile strength and Young's modulus of 49.9 MPa and 6.6 GPa, respectively), antibacterial (log removal value (LRV) of 4.8 and 3.0 for E. coli and S. aureus, respectively) and biodegradable properties of the multifunctional ACCs. It is worthwhile noting that the excellent antimicrobial effect is attributed to the sufficient contact of these microbes with ZnO NPs that were converted from the residual Zn2+ in ACCs. After five recycling processes, the elimination efficiency could still maintain a high LRV of 2.0-3.8. This high durability of ACC microbicidal activity was originated from strong twining interactions of cellulosic fibrils with in-situ synthesized ZnO NPs. This strategy was proven to be a facile and economical pathway to fabricate functional all-cellulose composites.
Collapse
Affiliation(s)
- Bowen Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, PR China
| | - Gaozhe Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, PR China.
| |
Collapse
|
17
|
Jackfruit seed starch/tamarind kernel xyloglucan/zinc oxide nanoparticles-based composite films: Preparation, characterization, and application on tomato (Solanum lycopersicum) fruits. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Zhang L, Hu Y, Wang X, Zhang A, Gao X, Yagoub AEGA, Ma H, Zhou C. Ultrasound-Assisted Synthesis of Potentially Food-Grade Nano-Zinc Oxide in Ionic Liquids: A Safe, Green, Efficient Approach and Its Acoustics Mechanism. Foods 2022; 11:foods11111656. [PMID: 35681406 PMCID: PMC9180576 DOI: 10.3390/foods11111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
In food application, nano-zinc oxide (nano-ZnO) is a very important nano metal material; thus, it is necessary to prepare potentially food-grade nano-ZnO. Nano-ZnO synthesized by the ultrasound-assisted method can reach a safe level because of its import physical processing characteristics. Firstly, the micromorphology and microstructure of nano-ZnO synthesized by the ultrasonic method were compared with that by the mechanical stirring method through atomic force microscopy, X-ray diffraction, and Fourier-transform infrared. Secondly, the on-line monitoring of different ultrasonic fields in real-time was studied during the whole synthesis process of nano-ZnO by polyvinylidene fluoride sensor, and two control groups (water medium) were set. The results showed that nano-ZnO obtained by the ultrasonic method were smaller in size and had less surface roughness compared with the mechanical stirring method. The nucleation and crystallization process of nano-ZnO was controlled by the ultrasonic method with sharp diffraction peaks of higher intensities. Moreover, for the ultrasonic mechanism, it was found that the oscillation behavior of bubbles varied from liquid to liquid, and variation was also found in the same liquid under different restraint of interfaces. Based on voltage waveforms monitored in the three liquid media, differences in the life cycle of cavitation bubble oscillation, cycle of collapse stage, maximum voltage amplitude, and acoustic intensity were observed. The physical mechanism of ultrasound-assisted synthesis of nano-ZnO was revealed through voltage fluctuations of the acoustics signal, which can lay a theoretical foundation for the controllability of food ultrasonic physical processing.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
| | - Yang Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
| | - Ao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.Z.); (Y.H.); (X.W.); (A.Z.); (X.G.); (H.M.)
- Correspondence: ; Tel.: +86-511-88780201
| |
Collapse
|
19
|
Phothisarattana D, Wongphan P, Promhuad K, Promsorn J, Harnkarnsujarit N. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids Surf B Biointerfaces 2022; 214:112472. [PMID: 35364455 DOI: 10.1016/j.colsurfb.2022.112472] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
Biodegradable polymers typically have inferior barrier properties compared to petroleum-based nonbiodegradable plastic. The addition of zinc oxide nanoparticles may enhance the functional properties of biodegradable packaging and extends the shelf life of packaged foods. Polybutylene adipate-co-terephthalate (PBAT) and thermoplastic starch (TPS) blended ZnO (1-5%) nanocomposite films were developed via blown extrusion for functional active meat packaging. The nanocomposite film morphology showed agglomeration of the nanoparticles, causing poor mechanical properties. Nanovoids formed at the interface between the polymer and nanoparticles, increasing permeability. Dispersion of ZnO nanofillers modified CO and C-O ester bonding in PBAT and increased hydrogen bonding with TPS. The interaction between ZnO and polymers increased the dispersion and reduced the agglomeration of nanoparticles. The highest ZnO content at 5% resulted in a stronger interaction between ZnO and TPS due to increased amorphous starch content, which improved homogeneous dispersion within the matrices, reducing nanoparticle size. The ZnO nanocomposite films reduced lipid oxidation and delayed microbial growth, resulting in a lower total viable count, lactic acid bacteria and yeast and mold in packaged pork meat. Higher ZnO concentrations from 3% showed microbial inhibitory effects. The growth of microorganisms was controlled by residual oxygen, morphology of the films and nanoparticle characteristics. The nanocomposite films effectively extended the shelf life by more than 3 days under refrigerated conditions.
Collapse
Affiliation(s)
- Danaya Phothisarattana
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Juthathip Promsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
20
|
Phothisarattana D, Harnkarnsujarit N. Characterisations of cassava starch and poly(butylene adipate‐co‐terephthalate) blown film with silicon dioxide nanocomposites. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Danaya Phothisarattana
- Department of Packaging and Materials Technology Faculty of Agro‐Industry Kasetsart University 50 Ngam Wong Wan Rd., Latyao, Chatuchak Bangkok 10900 Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology Faculty of Agro‐Industry Kasetsart University 50 Ngam Wong Wan Rd., Latyao, Chatuchak Bangkok 10900 Thailand
- Center for Advanced Studies for Agriculture and Food Kasetsart University 50 Ngam Wong Wan Rd., Latyao, Chatuchak Bangkok 10900 Thailand
| |
Collapse
|
21
|
Mandal N, Datta S, Manjaiah K, Dwivedi B. Synthesis, Characterization, and Biodegradation of Novel Starch Grafted Zincated Nanoclay Polymer Biocomposites. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Nintu Mandal
- Nanoscience and Nanotechnology Unit, Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Bhagalpur, India
| | - S.C. Datta
- Nanoscience and Nanotechnology Unit, Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - K.M. Manjaiah
- Nanoscience and Nanotechnology Unit, Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - B.S. Dwivedi
- Nanoscience and Nanotechnology Unit, Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| |
Collapse
|
22
|
Hu W, Zou Z, Li H, Zhang Z, Yu J, Tang Q. Fabrication of highly transparent and multifunctional polyvinyl alcohol/starch based nanocomposite films using zinc oxide nanoparticles as compatibilizers. Int J Biol Macromol 2022; 204:284-292. [PMID: 35149089 DOI: 10.1016/j.ijbiomac.2022.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
Abstract
This work explored biodegradable polyvinyl alcohol/starch (PVA/ST) film compatibilized by rod-like ZnO nanofillers as multifunctional food packaging materials. The influence of rod-like ZnO nanofillers on the microstructural, UV-shielding, antibacterial, mechanical, thermal, together with water barrier performances of PVA/ST composite films was fully studied. Results revealed that rod-like ZnO nanofillers could be uniformly distributed into the PVA/ST matrix, playing the role of compatibilizers to provide compact and dense nanocomposite films. The resulting nanocomposite films presented greatly improved mechanical and water vapor barrier properties as compared to virgin PVA/ST film. Moreover, the well distributed ZnO endowed PVA/ST film with excellent antimicrobial activity against both E. coli and S. aureus, together with outstanding UV-shielding capability meanwhile retaining highly optical transparency (approximately 90%). The developed PVA/ST/ZnO films were tested for packaging fresh-cut carrot slices to prevent microbial infection and prolong their shelf life. These results indicated that the developed highly transparent and multifunctional PVA/ST/ZnO nanocomposite films possess broad application prospects in active food packaging field.
Collapse
Affiliation(s)
- Wenkai Hu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ziang Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jingling Yu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qun Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
23
|
Marangoni Júnior L, Rodrigues PR, Silva RGD, Vieira RP, Alves RMV. Improving the mechanical properties and thermal stability of sodium alginate/hydrolyzed collagen films through the incorporation of SiO 2. Curr Res Food Sci 2022; 5:96-101. [PMID: 35024622 PMCID: PMC8728527 DOI: 10.1016/j.crfs.2021.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Biopolymer-based films have become leading alternatives to traditional fossil-based packaging plastics. Among the countless types of biopolymers with potential for such applications, films containing hydrolyzed collagen in their composition were scarcely explored. This study determined the effect of different loads of nano-SiO2 (0, 2, 6, 8 and 10% w/w of sodium alginate) in the sodium alginate (SA) and hydrolyzed collagen (HC) blend films in terms of structure, thickness, mechanical properties, and thermal stability. The results indicated an improvement in the general mechanical and thermal behavior. Tensile strength increased from 18.2 MPa (control sample) to 25.4 MPa for the SA/HC film incorporated with 10% nano-SiO2. In the same condition, the film's elongation at break improved impressively (from 19.5 to 35.8%). Thermal stability improved slightly for all proportions of nano-SiO2. Therefore, the addition of nano-SiO2 can be an easy and simple strategy to improve crucial properties of SA/HC blend films, increasing its performance for future application as sustainable packaging.
Collapse
Affiliation(s)
- Luís Marangoni Júnior
- Packaging Technology Center, Institute of Food Technology, Campinas, São Paulo, Brazil
| | - Plínio Ribeiro Rodrigues
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Renan Garcia da Silva
- Packaging Technology Center, Institute of Food Technology, Campinas, São Paulo, Brazil.,Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
24
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|