1
|
Valtari A, Kalinin S, Jäntti J, Vanhanen P, Hanzlikova M, Tonduru A, Stenberg K, Viitala T, Vellonen KS, Toropainen E, Ruponen M, Urtti A. Melanin-Binding-Based Discovery of Topically Instilled Carbonic Anhydrase Inhibitors for Targeted Delivery and Prolonged Action in the Eye. Mol Pharm 2025; 22:721-732. [PMID: 39780407 PMCID: PMC11795524 DOI: 10.1021/acs.molpharmaceut.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Glaucoma is a vision-threatening disease that is currently treated with intraocular-pressure-reducing eyedrops that are instilled once or multiple times daily. Unfortunately, the treatment is associated with low patient adherence and suboptimal treatment outcomes. We developed carbonic anhydrase II inhibitors (CAI-II) for a prolonged reduction of intraocular pressure (IOP). The long action is based on the melanin binding of the drugs that prolongs ocular drug retention and response. Overall, 63 new CAI-II compounds were synthesized and tested for melanin binding in vitro. Carbonic anhydrase affinity and IOP reduction of selected compounds were tested in rabbits. Prolonged reduction of IOP in pigmented rabbits was associated with increasing melanin binding of the compound. Installation of a single eye drop of a high melanin binder carbonic anhydrase inhibitor (CAI) resulted in ≈2 weeks' decrease of IOP, whereas the effect lasted less than 8 h in albino rabbits. Duration of the IOP response correlated with melanin binding of the compounds. Ocular pharmacokinetics of a high melanin binder compound was studied after eye drop instillation to the rat eyes. The CAI showed prolonged drug retention in the pigmented iris-ciliary body but was rapidly eliminated from the albino rat eyes. The melanin-bound drug depot maintained effective free concentrations of CAI in the ciliary body for several days after application of a single eye drop. In conclusion, melanin binding is a useful tool in the discovery of long-acting ocular drugs.
Collapse
Affiliation(s)
- Annika Valtari
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Stanislav Kalinin
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Janika Jäntti
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Pekka Vanhanen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Martina Hanzlikova
- Drug
Research Program, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5, 00014 Helsinki, Finland
| | - Arun Tonduru
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Katja Stenberg
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Tapani Viitala
- Drug
Research Program, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5, 00014 Helsinki, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Kati-Sisko Vellonen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Elisa Toropainen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Marika Ruponen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Arto Urtti
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
- Drug
Research Program, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
3
|
Račić A, Jurišić Dukovski B, Lovrić J, Dobričić V, Vučen S, Micov A, Stepanović-Petrović R, Tomić M, Pecikoza U, Bajac J, Krajišnik D. Synergism of polysaccharide polymers in antihistamine eye drops: Influence on physicochemical properties and in vivo efficacy. Int J Pharm 2024; 655:124033. [PMID: 38522490 DOI: 10.1016/j.ijpharm.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The incorporation of polymers into drug delivery vehicles has been shown to be a useful approach to prolong the residence time of drugs in the precorneal tear film and to improve penetration into biological membranes. The main objective of this research was to formulate novel viscous eye drops with ketotifen as the active ingredient, containing the polysaccharides: chitosan (MCH), hydroxypropyl guar gum (HPG) and hyaluronic acid (SH) alone and in combination as functional polymers. DSC and FT-IR techniques showed the compatibility between ketotifen and polymers. Physicochemical and rheological analysis at ambient and simulated physiological conditions, as well as the evaluation of mucoadhesive properties showed that vehicles containing combinations of polymers have suitable physicochemical and functional properties with demonstrated synergism between combined polymers (MCH and HPG i.e. SH and HPG). The drug permeability was successfully estimated in vitro using HCE-T cell-based models. MTT cytotoxicity assay demonstrates that the tested formulations were non-toxic and well tolerated. In vivo preclinical study on mice revealed that both vehicles containing mixed polymers enhanced and prolonged the antipruritic/analgesic-like effect of ophthalmic ketotifen. Based on these results, both combinations of polysaccharide polymers, especially SH-HPG, could be considered as potential new carriers for ketotifen for ophthalmic use.
Collapse
Affiliation(s)
- Anđelka Račić
- Department of Pharmaceutical Technology and Cosmetology, University of Banja Luka, Faculty of Medicine, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Bisera Jurišić Dukovski
- R&D, PLIVA Croatia Ltd., TEVA Group Member, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia.
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Sonja Vučen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Ana Micov
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Radica Stepanović-Petrović
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Maja Tomić
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Uroš Pecikoza
- Department of Pharmacology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelena Bajac
- Department of Chemical Engineering, University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
4
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
5
|
Li F, Chen X, He Y, Peng Z. Mucoadhesive Thiolated Hyaluronic Acid/Pluronic F127 Nanogel Formation via Thiol-Maleimide Click Reaction for Intravesical Drug Delivery. ACS APPLIED BIO MATERIALS 2024; 7:1976-1989. [PMID: 38447202 DOI: 10.1021/acsabm.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH. The HA-SH/PF127 nanogels prepared at different thiol-to-maleimide group molar ratios, water-to-oil volume ratios, and cross-linking reaction times were characterized regarding hydrodynamic diameter (Dh) and zeta potential (ζ), and the optimal formulation was obtained. The excellent mucoadhesive properties of the HA-SH/PF127 nanogels were evaluated by using the mucin particle method. Doxorubicin (DOX) was encapsulated in the PF127 core of DOX@HA-SH/PF127 nanogels with a high loading efficiency (87.5%) and sustained release from the nanogels in artificial urine. Ex vivo studies on porcine bladder mucosa showed that the DOX@HA-SH/PF127 nanogels enhanced the penetration of the DOX into the bladder mucosa without disrupting the mucus structure or the bladder tissue. A significant dose-dependent cytotoxic effect of DOX@HA-SH/PF127 nanogels on both T24 and MB49 cells was observed. The present study demonstrates that the mucoadhesive HA-SH/PF127 nanogels are a promising intravesical drug delivery system for superficial BC therapy.
Collapse
Affiliation(s)
- Fayang Li
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Xianhuang Chen
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang 330031, China
| | - Zhiping Peng
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
Salar Amoli M, Yang H, Anand R, EzEldeen M, Aktan MK, Braem A, Jacobs R, Bloemen V. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Int J Biol Macromol 2024; 262:129684. [PMID: 38307741 DOI: 10.1016/j.ijbiomac.2024.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Incorporation of growth factors, signaling molecules and drugs can be vital for the success of tissue engineering in complex structures such as the dentoalveolar region. This has led to the development of a variety of drug release systems. This study aimed to develop pNIPAM-methylcellulose microgels with different synthesis parameters based on a 23 full factorial design of experiments for this application. Microgel properties, including volume phase transition temperature (VPTT), hydrodynamic size, drug loading and release, and cytocompatibility were systematically evaluated. The results demonstrated successful copolymerization and development of the microgels, a hydrodynamic size ranging from ∼200 to ∼500 nm, and VPTT in the range of 34-39 °C. Furthermore, loading of genipin, capable of inducing odontoblastic differentiation, and its sustained release over a week was shown in all formulations. Together, this can serve as a solid basis for the development of tunable drug-delivering pNIPAM-methylcellulose microgels for specific tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Huimin Yang
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Sharma P, Singh J, Singh B. Evaluation of physiochemical and biomedical properties of psyllium-poly(vinyl phosphonic acid-co-acrylamide)-cl-N,N-methylene bis acrylamide based hydrogels. Int J Biol Macromol 2024; 260:129546. [PMID: 38246461 DOI: 10.1016/j.ijbiomac.2024.129546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Present investigation deals with the synthesis of psyllium based copolymeric hydrogels and evaluation of their physiochemical and biomedical properties. These copolymers have been prepared by grafting of poly(vinyl phosphonic acid) (poly (VPA)) and poly(acrylamide) (poly(AAm)) onto psyllium in the presence of crosslinker N,N-methylene bis acrylamide (NNMBA). These copolymers [psyllium-poly(VPA-co-AAm)-cl-NNMBA] were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA)- differential thermal analysis (DTG). FESEM, AFM and XRD demonstrated heterogeneous morphology with a rough surface and an amorphous nature. Diffusion of ornidazole occurred with a non-Fickian diffusion mechanism, and the release profile data was fitted in the Korsemeyer-Peppas kinetic model. Biochemical analysis of hydrogel properties confirmed the blood-compatible nature during blood-polymer interactions and revealed haemolysis value 3.95 ± 0.05 %. The hydrogels exhibited mucoadhesive character during biomembrane-polymer interactions and demonstrated detachment force = 99.0 ± 0.016 mN. During 2,2-diphenyl-1-picrylhydrazyl reagent (DPPH) assay, free radical scavenging was observed 37.83 ± 3.64 % which illustrated antioxidant properties of hydrogels. Physiological and biomedical properties revealed that these hydrogels could be explored for drug delivery uses.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Jasvir Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
8
|
Meher MK, Naidu G, Mishra A, Poluri KM. A review on multifaceted biomedical applications of heparin nanocomposites: Progress and prospects. Int J Biol Macromol 2024; 260:129379. [PMID: 38242410 DOI: 10.1016/j.ijbiomac.2024.129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Advances in polymer-based nanocomposites have revolutionized biomedical applications over the last two decades. Heparin (HP), being a highly bioactive polymer of biological origin, provides strong biotic competence to the nanocomposites, broadening the horizon of their applicability. The efficiency, biocompatibility, and biodegradability properties of nanomaterials significantly improve upon the incorporation of heparin. Further, inclusion of structural/chemical derivatives, fractionates, and mimetics of heparin enable fabrication of versatile nanocomposites. Modern nanotechnological interventions have exploited the inherent biofunctionalities of heparin by formulating various nanomaterials, including inorganic/polymeric nanoparticles, nanofibers, quantum dots, micelles, liposomes, and nanogels ensuing novel functionalities targeting diverse clinical applications involving drug delivery, wound healing, tissue engineering, biocompatible coatings, nanosensors and so on. On this note, the present review explicitly summarises the recent HP-oriented nanotechnological developments, with a special emphasis on the reported successful engagement of HP and its derivatives/mimetics in nanocomposites for extensive applications in the laboratory and health-care facility. Further, the advantages and limitations/challenges specifically associated with HP in nanocomposites, undertaken in this current review are quintessential for future innovations/discoveries pertaining to HP-based nanocomposites.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
9
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
10
|
Yuan R, Zhang Y, Liao L, Ge Y, Li W, Zhi Q. Biomineralization-Inspired Anti-Caries Strategy Based on Multifunctional Nanogels as Mineral Feedstock Carriers. Int J Nanomedicine 2023; 18:4933-4947. [PMID: 37693886 PMCID: PMC10488770 DOI: 10.2147/ijn.s418465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Dentin caries remains a significant public concern, with no clinically viable material that effectively combines remineralization and antimicrobial properties. To address this issue, this study focused on the development of a bio-inspired multifunctional nanogel with both antibacterial and biomineralization properties. Methods First, p(NIPAm-co-DMC) (PNPDC) copolymers were synthesized from N-isopropylacrylamide (NIPAm) and 2-methacryloyloxyethyl-trimethyl ammonium chloride (DMC). Subsequently, PNPDC was combined with γ-polyglutamic acid (γ-PGA) through physical cross-linking to form nanogels. These nanogels served as templates for the mineralization of calcium phosphate (Cap), resulting in Cap-loaded PNPDC/PGA nanogels. The nanogels were characterized using various techniques, including TEM, particle tracking analysis, XRD, and FTIR. The release properties of ions were also assessed. In addition, the antibacterial properties of the Cap-loaded PNPDC/PGA nanogels were evaluated using the broth microdilution method and a biofilm formation assay. The remineralization effects were examined on both demineralized dentin and type I collagen in vitro. Results PNPDC/PGA nanogels were successfully synthesized and loaded with Cap. The diameter of the Cap-loaded PNPDC/PGA nanogels was measured as 196.5 nm at 25°C and 162.3 nm at 37°C. These Cap-loaded nanogels released Ca2+ and PO43- ions quickly, effectively blocking dental tubules with a depth of 10 μm and promoting the remineralization of demineralized dentin within 7 days. Additionally, they facilitated the heavy intrafibrillar mineralization of type I collagen within 3 days. Moreover, the Cap-loaded nanogels exhibited MIC50 and MIC90 values of 12.5 and 50 mg/mL against Streptococcus mutans, respectively, with an MBC value of 100 mg/mL. At a concentration of 50 mg/mL, the Cap-loaded nanogels also demonstrated potent inhibitory effects on biofilm formation by Streptococcus mutans while maintaining good biocompatibility. Conclusion Cap-loaded PNPDC/PGA nanogels are a multifunctional biomimetic system with antibacterial and dentin remineralization effects. This strategy of using antibacterial nanogels as mineral feedstock carriers offered fresh insight into the clinical management of caries.
Collapse
Affiliation(s)
- Rui Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Yuwen Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yige Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Qinghui Zhi
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| |
Collapse
|
11
|
Jalal RR, Ways TMM, Abu Elella MH, Hassan DA, Khutoryanskiy VV. Preparation of mucoadhesive methacrylated chitosan nanoparticles for delivery of ciprofloxacin. Int J Biol Macromol 2023:124980. [PMID: 37236558 DOI: 10.1016/j.ijbiomac.2023.124980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Mucoadhesive polymers and their nanoparticles have attracted a lot of attention in pharmaceutical applications, especially transmucosal drug delivery (TDD). Mucoadhesive polysaccharide-based nanoparticles, particularly chitosan, and its derivatives, are widely used for TDD owing to their outstanding features such as biocompatibility, mucoadhesive, and absorption-enhancing properties. Herein, this study aimed to design potential mucoadhesive nanoparticles for the delivery of ciprofloxacin based on methacrylated chitosan (MeCHI) using the ionic gelation method in the presence of sodium tripolyphosphate (TPP) and compared them with the unmodified chitosan nanoparticles. In this study, different experimental conditions including the polymer to TPP mass ratios, NaCl, and TPP concentration were changed to achieve unmodified and MeCHI nanoparticles with the smallest particle size and lowest polydispersity index. At 4:1 polymer /TPP mass ratio, both chitosan and MeCHI nanoparticles had the smallest size (133 ± 5 nm and 206 ± 9 nm, respectively). MeCHI nanoparticles were generally larger and slightly more polydisperse than the unmodified chitosan nanoparticles. Ciprofloxacin-loaded MeCHI nanoparticles had the highest encapsulation efficiency (69 ± 13 %) at 4:1 MeCHI /TPP mass ratio and 0.5 mg/mL TPP, but similar encapsulation efficiency to that of their chitosan counterpart at 1 mg/mL TPP. They also provided a more sustained and slower drug release compared to their chitosan counterpart. Additionally, the mucoadhesion (retention) study on sheep abomasum mucosa showed that ciprofloxacin-loaded MeCHI nanoparticles with optimized TPP concentration had better retention than the unmodified chitosan counterpart. The percentage of the remained ciprofloxacin-loaded MeCHI and chitosan nanoparticles on the mucosal surface was 96 % and 88 %, respectively. Therefore, MeCHI nanoparticles have an excellent potential for applications in drug delivery.
Collapse
Affiliation(s)
- Renas Rzgar Jalal
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
| | - Twana Mohammed M Ways
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq.
| | - Mahmoud H Abu Elella
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Diyar Ahmed Hassan
- Pioneer Co. for Pharmaceutical Industries, Sulaimani 46001, Kurdistan Region, Iraq
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
12
|
Korovkina O, Polyakov D, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Stimuli-Responsive Polypeptide Nanoparticles for Enhanced DNA Delivery. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238495. [PMID: 36500587 PMCID: PMC9736633 DOI: 10.3390/molecules27238495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The development of non-viral delivery systems for effective gene therapy is one of the current challenges in modern biomedicinal chemistry. In this paper, the synthesis of pH- and redox-responsive amphiphilic polypeptides for intracellular DNA delivery is reported and discussed. Two series of polypeptides consisting of L-lysine, L-phenylalanine, L-histidine, and L-cysteine as well as the same amino acids with L-glutamic acid were synthesized by a combination of copolymerization of N-carboxyanhydrides of α-amino acids and post-polymerization modification of the resulting copolymers. The presence of histidine provided pH-sensitive properties under weakly acidic conditions specific to endosomal pH. In turn, the presence of cysteine allowed for the formation of redox-responsive disulfide bonds, which stabilized the self-assembled nanoparticles in the extracellular environment but could degrade inside the cell. The formation of intraparticle disulfide bonds resulted in their compactization from 200-250 to 55-100 nm. Empty and pDNA-loaded cross-linked nanoparticles showed enhanced stability in various media compared to non-crosslinked nanoparticles. At the same time, the addition of glutathione promoted particle degradation and nucleic acid release. The delivery systems were able to retain their size and surface charge at polypeptide/pDNA ratios of 10 or higher. GFP expression in HEK 293 was induced by the delivery of pEGFP-N3 with the developed polypeptide nanoparticles. The maximal transfection efficacy (70%) was observed when the polypeptide/pDNA ratio was 100.
Collapse
Affiliation(s)
- Olga Korovkina
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Dmitry Polyakov
- Institute of Experimental Medicine, Acad. Pavlov Street 12, 197376 St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
13
|
Afloarea OT, Cheaburu Yilmaz CN, Verestiuc L, Bibire N. Development of Vaginal Carriers Based on Chitosan-Grafted-PNIPAAm for Progesterone Administration. Gels 2022; 8:596. [PMID: 36135308 PMCID: PMC9498816 DOI: 10.3390/gels8090596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan-based hydrogels possess numerous advantages, such as biocompatibility and non-toxicity, and it is considered a proper material to be used in biomedical and pharmaceutical applications. Vaginal administration of progesterone represents a viable alternative for maintaining pregnancy and reducing the risk of miscarriage and in supporting the corpus luteum during fertilization cycles. This study aimed to develop new formulations for vaginal administration of progesterone (PGT). A previously synthesized responsive chitosan-grafted-poly (N-isopropylacrylamide) (CS-g-PNIPAAm) was formulated in various compositions with polyvinyl alcohol (PVA) as external crosslinking agent to obtain pH- and temperature-dependent hydrogels; the hydrogels had the capacity to withstand shear forces encountered in the vagina due to its mechanism of swelling once in contact with vaginal fluids. Three different hydrogels based on grafted chitosan were analyzed via Fourier-transform infrared spectroscopy (FTIR), swelling tests, in vitro drug release, and bioadhesion properties by TA.XTplus texture analysis. A higher amount of PVA decreased the swelling and the bioadhesion capacities of the hydrogel. All hydrogels showed sensitivity to temperature and pH in terms of swelling and in vitro delivery characteristics. By loading progesterone, the studied hydrogels seemed to possess even higher sensitivity than drug-free matrices. The release profile of the active substance and the bioadhesion characteristics recommended the CS-g-PNIPAAm/PVA 80/20 +PGT (P1) hydrogel as a proper constituent for the vaginal formulation for progesterone administration.
Collapse
Affiliation(s)
- Oana-Teodora Afloarea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | | | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| |
Collapse
|
14
|
Maltseva ES, Nikolaeva VO, Savin AM, Dobryakov MY, Koshel EI, Krivoshapkin PV, Krivoshapkina EF. Fluorescent Hybrid Material Based on Natural Spider Silk and Carbon Dots for Bioapplication. ACS Biomater Sci Eng 2022; 8:3310-3319. [PMID: 35763797 DOI: 10.1021/acsbiomaterials.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the outcome of an operation largely depends on the quality of wound healing, it is one of the most challenging stages in surgery. Today, wound closure is mostly undertaken by means of a surgical suture. Good surgical sutures are biocompatible and biodegradable and possess excellent mechanical properties. Preferably, these sutures demonstrate optical activity for bacteria detection as there is a risk of surgical site infections. In this study, a solution, which fulfills all the requirements for manufacturing a multifunctional hybrid material, is proposed. In this work, a method for the in situ modification of spider silk with fluorescent carbon dots has been developed. The basic concept is the use of silk fibers as both the main framework for tissue regeneration and a carbon source during carbon dot synthesis. The resulting hybrid material exhibits strong photoluminescence in the red region of the spectrum (590 nm) when irradiated with blue light (480 nm). The proposed approach potentially allows for simultaneous wound closure and pathogen detection.
Collapse
Affiliation(s)
- Elizaveta S Maltseva
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| | - Valeria O Nikolaeva
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| | - Artemii M Savin
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| | - Mikhail Y Dobryakov
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| | - Elena I Koshel
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| | - Pavel V Krivoshapkin
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| | - Elena F Krivoshapkina
- Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia
| |
Collapse
|
15
|
Kalinin S, Kovalenko A, Valtari A, Nocentini A, Gureev M, Urtti A, Korsakov M, Supuran CT, Krasavin M. 5-(Sulfamoyl)thien-2-yl 1,3-oxazole inhibitors of carbonic anhydrase II with hydrophilic periphery. J Enzyme Inhib Med Chem 2022; 37:1005-1011. [PMID: 35350949 PMCID: PMC8973362 DOI: 10.1080/14756366.2022.2056733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hydrophilic derivatives of an earlier described series of carbonic anhydrase inhibitors have been designed, prepared and profiled against a panel of carbonic anhydrase isoforms, including the glaucoma-related hCA II. For all hydrophilic derivatives, computational prediction of intraocular permeability routes showed the predominance of conjunctival rather than corneal absorption. The potentially reactive primary or secondary amine periphery of these compounds makes them suitable candidates for bioconjugation to polymeric drug carriers. As was shown previously, the most active hCA II inhibitor is efficacious in alleviating intraocular pressure in normotensive rabbits with efficacy matching that of dorzolamide.
Collapse
Affiliation(s)
- Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russian Federation.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Alexander Kovalenko
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Annika Valtari
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Alessio Nocentini
- Department of Neurofarba, Universita degli Studi di Firenze, Florence, Italy
| | - Maxim Gureev
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Arto Urtti
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russian Federation.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikhail Korsakov
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russian Federation
| | - Claudiu T Supuran
- Department of Neurofarba, Universita degli Studi di Firenze, Florence, Italy
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
16
|
Levit M, Vdovchenko A, Dzhuzha A, Zashikhina N, Katernyuk E, Gostev A, Sivtsov E, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Self-Assembled Nanoparticles Based on Block-Copolymers of Poly(2-Deoxy-2-methacrylamido-d-glucose)/Poly( N-Vinyl Succinamic Acid) with Poly( O-Cholesteryl Methacrylate) for Delivery of Hydrophobic Drugs. Int J Mol Sci 2021; 22:ijms222111457. [PMID: 34768888 PMCID: PMC8583880 DOI: 10.3390/ijms222111457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The self-assembly of amphiphilic block-copolymers is a convenient way to obtain soft nanomaterials of different morphology and scale. In turn, the use of a biomimetic approach makes it possible to synthesize polymers with fragments similar to natural macromolecules but more resistant to biodegradation. In this study, we synthesized the novel bio-inspired amphiphilic block-copolymers consisting of poly(N-methacrylamido-d-glucose) or poly(N-vinyl succinamic acid) as a hydrophilic fragment and poly(O-cholesteryl methacrylate) as a hydrophobic fragment. Block-copolymers were synthesized by radical addition-fragmentation chain-transfer (RAFT) polymerization using dithiobenzoate or trithiocarbonate chain-transfer agent depending on the first monomer, further forming the hydrophilic block. Both homopolymers and copolymers were characterized by 1H NMR and Fourier transform infrared spectroscopy, as well as thermogravimetric analysis. The obtained copolymers had low dispersity (1.05-1.37) and molecular weights in the range of ~13,000-32,000. The amphiphilic copolymers demonstrated enhanced thermal stability in comparison with hydrophilic precursors. According to dynamic light scattering and nanoparticle tracking analysis, the obtained amphiphilic copolymers were able to self-assemble in aqueous media into nanoparticles with a hydrodynamic diameter of approximately 200 nm. An investigation of nanoparticles by transmission electron microscopy revealed their spherical shape. The obtained nanoparticles did not demonstrate cytotoxicity against human embryonic kidney (HEK293) and bronchial epithelial (BEAS-2B) cells, and they were characterized by a low uptake by macrophages in vitro. Paclitaxel loaded into the developed polymer nanoparticles retained biological activity against lung adenocarcinoma epithelial cells (A549).
Collapse
Affiliation(s)
- Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
| | - Alena Vdovchenko
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Apollinariia Dzhuzha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
| | - Elena Katernyuk
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Alexey Gostev
- Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia;
| | - Eugene Sivtsov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia;
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Correspondence:
| |
Collapse
|