1
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-43. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
2
|
Elhabal SF, Abdelmonem R, El Nashar RM, Elrefai MFM, Hamdan AME, Safwat NA, Shoela MS, Hassan FE, Rizk A, Kabil SL, El-Nabarawy NA, Taha AA, El-Nabarawi M. Enhanced Antibacterial Activity of Clindamycin Using Molecularly Imprinted Polymer Nanoparticles Loaded with Polyurethane Nanofibrous Scaffolds for the Treatment of Acne Vulgaris. Pharmaceutics 2024; 16:947. [PMID: 39065644 PMCID: PMC11279838 DOI: 10.3390/pharmaceutics16070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Acne vulgaris, a prevalent skin condition, arises from an imbalance in skin flora, fostering bacterial overgrowth. Addressing this issue, clindamycin molecularly imprinted polymeric nanoparticles (Clin-MIP) loaded onto polyurethane nanofiber scaffolds were developed for acne treatment. Clin-MIP was synthesized via precipitation polymerization using methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and azoisobutyronitrile (AIBN) as functional monomers, crosslinkers, and free-radical initiators, respectively. MIP characterization utilized Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) before being incorporated into polyurethane nanofibers through electrospinning. Further analysis involved FTIR, scanning electron microscopy (SEM), in vitro release studies, and an ex vivo study. Clin-MIP showed strong antibacterial activity against S. aureus, with inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.39 and 6.25 μg/mL, respectively. It significantly dropped the bacterial count from 1 × 108 to 39 × 101 CFU/mL in vivo and has bactericidal activity within 180 min of incubation in vitro. The pharmacodynamic and histopathology studies revealed a significant decrease in infected animal skin inflammation, epidermal hypertrophy, and congestion upon treatment with Clin-MIP polyurethane nanofiber and reduced pro-inflammatory cytokines (NLRP3, TNF-α, IL-1β, and IL-6) conducive to acne healing. Consequently, the recently created Clin-MIP polyurethane nanofibrous scaffold. This innovative approach offers insight into creating materials with several uses for treating infectious wounds caused by acne.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City 12566, Egypt;
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | | | - Nesreen A. Safwat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt;
| | - Mai S. Shoela
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Fatma E. Hassan
- Medical Physiology Department, Faculty of Medicine, Cairo University, Giza 11562, Egypt;
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Amira Rizk
- Food Science and Technology Department, Faculty of Agricultural, Tanta University, Tanta City 31527, Egypt;
| | - Soad L. Kabil
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nagla Ahmed El-Nabarawy
- National Egyptian Center of Environmental & Toxicological Research (NECTR), Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Amal Anwar Taha
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City 12566, Egypt;
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| |
Collapse
|
3
|
Fallah-Darrehchi M, Zahedi P. Improvement of Intracellular Interactions through Liquid Crystalline Elastomer Scaffolds by the Alteration of Topology. ACS OMEGA 2023; 8:46878-46891. [PMID: 38107894 PMCID: PMC10720303 DOI: 10.1021/acsomega.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Preparation of inherently bioactive scaffolds has become a challenging issue owing to their complicated synthesis and nonrobust modified cell-actuating property. Liquid crystalline elastomers (LCEs), due to their combined specialties of liquid crystals and elastomers as well as their ability to respond to various kinds of stimuli, have reversibly led to the design of a new class of stimuli-responsive tissue-engineered scaffolds. In this line, in the first stage of this research work, synthesis and evaluation of acrylate-based LCE films (LCEfilm) encompassing mesogenic monomers are carried out. In the second step, the design of an affordable electrospinning technique for preparing LCE nanofibers (LCEfiber) as a problematic topic, thanks to the low molecular weight of the mesogenic chains of LCEs, is investigated. For this purpose, two approaches are considered, including (1) photo-cross-linking of electrospun LCEfiber and (2) blending LCE with poly(ε-caprolactone) (PCL) to produce morphologically stable nanofibers (PCL-LCEfiber). In the following, thermal, mechanical, and morphological evaluations show the optimized crosslinker (mol)/aliphatic spacer (mol) molar ratio of 50:50 for LCEfilm samples. On the other hand, for LCEfiber samples, the appropriate amounts of excessive mesogenic monomer and PCL/LCE (v/v) to fabricate the uniform nanofibers are determined to be 20% and 1:2, respectively. Eventually, PC12 cell compatibility and the impact of the liquid crystalline phase on the PC12 cell dynamic behavior of the samples are examined. The obtained results reveal that PC12 cells cultured on electrospun PCL-LCEfiber nanofibers with an average diameter of ∼659 nm per sample are alive and the scaffold has susceptibility for cell proliferation and actuation because of the rapid increase in cell density and number of singularity points formed in time-lapse cell imaging. Moreover, the PCL-LCEfiber nanofibrous scaffold exhibits a high performance for cell differentiation according to detailed biological evaluations such as gene expression level measurements. The time-lapse evaluation of PC12 cell flow fields confirms the significant influence of the reprogrammable liquid crystalline phase in the PCL-LCEfiber nanofibrous scaffold on topographical cue induction compared to the biodegradable PCL nanofibers.
Collapse
Affiliation(s)
- Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research
Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research
Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran
| |
Collapse
|
4
|
Shi S, Ou X, Cheng D. How Advancing is Peripheral Nerve Regeneration Using Nanofiber Scaffolds? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:6763-6779. [PMID: 38026517 PMCID: PMC10657550 DOI: 10.2147/ijn.s436871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Peripheral nerve injuries present significant challenges in regenerative medicine, primarily due to inherent limitations in the body's natural healing processes. In response to these challenges and with the aim of enhancing peripheral nerve regeneration, nanofiber scaffolds have emerged as a promising and advanced intervention. However, a deeper understanding of the underlying mechanistic foundations that drive the favorable contributions of nanofiber scaffolds to nerve regeneration is essential. In this comprehensive review, we make an exploration of the latent potential of nanofiber scaffolds in augmenting peripheral nerve regeneration. This exploration includes a detailed introduction to the fabrication methods of nanofibers, an analysis of the intricate interactions between these scaffolds and cellular entities, an examination of strategies related to the controlled release of bioactive agents, an assessment of the prospects for clinical translation, an exploration of emerging trends, and thorough considerations regarding biocompatibility and safety. By comprehensively elucidating the intricate structural attributes and multifaceted functional capacities inherent in nanofiber scaffolds, we aim to offer a prospective and effective strategy for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
5
|
Zhang H, Lan D, Wu B, Chen X, Li X, Li Z, Dai F. Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury. Biomacromolecules 2023. [PMID: 37329512 DOI: 10.1021/acs.biomac.3c00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Collapse
Affiliation(s)
- Haiqiang Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xia Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM. Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems. MICROMACHINES 2023; 14:208. [PMID: 36677269 PMCID: PMC9864385 DOI: 10.3390/mi14010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components' characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems.
Collapse
Affiliation(s)
| | - Aracely Serrano-Medina
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Kenia Palomino-Vizcaino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22427, Mexico
| | | | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
7
|
Jiffrin R, Razak SIA, Jamaludin MI, Hamzah ASA, Mazian MA, Jaya MAT, Nasrullah MZ, Majrashi M, Theyab A, Aldarmahi AA, Awan Z, Abdel-Daim MM, Azad AK. Electrospun Nanofiber Composites for Drug Delivery: A Review on Current Progresses. Polymers (Basel) 2022; 14:polym14183725. [PMID: 36145871 PMCID: PMC9506405 DOI: 10.3390/polym14183725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
A medication’s approximate release profile should be sustained in order to generate the desired therapeutic effect. The drug’s release site, duration, and rate must all be adjusted to the drug’s therapeutic aim. However, when designing drug delivery systems, this may be a considerable hurdle. Electrospinning is a promising method of creating a nanofibrous membrane since it enables drugs to be placed in the nanofiber composite and released over time. Nanofiber composites designed through electrospinning for drug release purposes are commonly constructed of simple structures. This nanofiber composite produces matrices with nanoscale fiber structure, large surface area to volume ratio, and a high porosity with small pore size. The nanofiber composite’s large surface area to volume ratio can aid with cell binding and multiplication, drug loading, and mass transfer processes. The nanofiber composite acts as a container for drugs that can be customized to a wide range of drug release kinetics. Drugs may be electrospun after being dissolved or dispersed in the polymer solution, or they can be physically or chemically bound to the nanofiber surface. The composition and internal structure of the nanofibers are crucial for medicine release patterns.
Collapse
Affiliation(s)
- Renatha Jiffrin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
- Sports Innovation & Technology Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
- Correspondence: (S.I.A.R.); (M.M.A.-D.); (A.K.A.)
| | - Mohamad Ikhwan Jamaludin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Amir Syahir Amir Hamzah
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muadz Ahmad Mazian
- Faculty of Applied Science, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | | | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah 23881, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Ahmed A. Aldarmahi
- Basic Science Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, National Guard-Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (S.I.A.R.); (M.M.A.-D.); (A.K.A.)
| | - Abul Kalam Azad
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
- Correspondence: (S.I.A.R.); (M.M.A.-D.); (A.K.A.)
| |
Collapse
|
8
|
Da LC, Sun Y, Lin YH, Chen SZ, Chen GX, Zheng BH, Du SR. Emerging Bioactive Agent Delivery-Based Regenerative Therapies for Lower Genitourinary Tissues. Pharmaceutics 2022; 14:1718. [PMID: 36015344 PMCID: PMC9414065 DOI: 10.3390/pharmaceutics14081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yun-Hong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Gang-Xin Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|