1
|
Dang CH, Nguyen LKT, Tran MT, Le VD, Ty NM, Pham TNH, Vu-Quang H, Chi TTK, Giang TTH, Tu NTT, Nguyen TD. Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1227-1237. [PMID: 39376727 PMCID: PMC11457073 DOI: 10.3762/bjnano.15.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
Abstract
This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH4 as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.
Collapse
Affiliation(s)
- Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Minh-Trong Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Ty
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
| | - T Ngoc Han Pham
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Tran Thi Huong Giang
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| |
Collapse
|
2
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
3
|
Zhou R, Liu Y, Li M, Cao J, Cheng J, Wei D, Li B, Wang Y, Jia D, Jiang B, Valiev RZ, Zhou Y. Electrical Responsive Coating with a Multilayered TiO 2-SnO 2-RuO 2 Heterostructure on Ti for Controlling Antibacterial Ability and Improving Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39064-39078. [PMID: 39028896 DOI: 10.1021/acsami.4c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The bacterial infection and poor osseointegration of Ti implants could significantly compromise their applications in bone repair and replacement. Based on the carrier separation ability of the heterojunction and the redox reaction of pseudocapacitive metal oxides, we report an electrically responsive TiO2-SnO2-RuO2 coating with a multilayered heterostructure on a Ti implant. Owing to the band gap structure of the TiO2-SnO2-RuO2 coating, electron carriers are easily enriched at the coating surface, enabling a response to the endogenous electrical stimulation of the bone. With the formation of SnO2-RuO2 pseudocapacitance on the modified surface, the postcharging mode can significantly change the surface chemical state of the coating due to the redox reaction, enhancing the antibacterial ability and osteogenesis-related gene expression of the human bone marrow mesenchymal stem cells. Owing to the attraction for Ca2+, only the negatively postcharged SnO2@RuO2 can promote apatite deposition. The in vivo experiment reveals that the S-SnO2@RuO2-NP could effectively kill the bacteria colonized on the surface and promote osseointegration with the synostosis bonding interface. Thus, negatively charging the electrically responsive coating of TiO2-SnO2-RuO2 is a good strategy to endow modified Ti implants with excellent antibacterial ability and osseointegration.
Collapse
Affiliation(s)
- Rui Zhou
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ming Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Jianyun Cao
- Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650500, PR China
| | - Jiahui Cheng
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, PR China
| | - Daqing Wei
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Baoqiang Li
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Yaming Wang
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Dechang Jia
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Bailing Jiang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ruslan Z Valiev
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Yu Zhou
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
4
|
Bakhsh EM, Akhtar K, Khan SB, Asiri AM, Kamal T, Bilal M, Khan SA. Silver oxide doped iron oxide/alginate nanocomposite coated cotton cloth for selective catalytic reduction of potassium ferricyanide. CHEMOSPHERE 2024; 355:141743. [PMID: 38513958 DOI: 10.1016/j.chemosphere.2024.141743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Silver oxide doped iron oxide (Ag2O-Fe2O3) nanocatalyst was prepared and coated on cotton cloth (CC) as well as wrapped in sodium alginate (Alg) hydrogel. Ag2O-Fe2O3 coated CC (Ag2O-Fe2O3/CC) and Ag2O-Fe2O3 wrapped Alg (Ag2O-Fe2O3/Alg) were utilized as catalysts in reduction reaction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). Ag2O-Fe2O3/CC and Ag2O-Fe2O3/Alg were found to be effective and selective catalyst for the reaction of K3[Fe(CN)6]. Further amount of catalyst, K3[Fe(CN)6] quantity, amount of NaBH4, stability of catalyst and recyclability were optimized for the reaction of K3[Fe(CN)6] reduction. Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were appeared to be the stable catalysts by maintaining high activity during recyclability tests showing highest reaction rate constants (kapp) of 0.3472 and 0.5629 min-1, correspondingly. However, Ag2O-Fe2O3/CC can be easily recovered as compared to Ag2O-Fe2O3/Alg by simply removing from the reaction which is the main advantage of Ag2O-Fe2O3/CC. Moreover, Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were also examined in real samples and found useful for K3[Fe(CN)6] reduction involving real samples. The Ag2O-Fe2O3/CC nanocatalyst is a cost and time saving material for economical reduction of K3[Fe(CN)6] and environmental safety.
Collapse
Affiliation(s)
- Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, (Khyber Pakhtunkhwa) , Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
5
|
Latif MJ, Ali S, Jamil S, Bibi S, Jafar T, Rasheed A, Noreen S, Bashir A, Rauf Khan S. Comparative catalytic reduction and degradation with biodegradable sodium alginate based nanocomposite: Zinc oxide/N-doped carbon nitride/sodium alginate. Int J Biol Macromol 2024; 254:127954. [PMID: 37951425 DOI: 10.1016/j.ijbiomac.2023.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sodium alginate (SA) is a biodegradable macromolecule which is used to synthesize nanocomposites and their further use as catalysis. Zinc oxide (ZnO) and nitrogen doped carbon nitride (ND-C3N4) nanoparticles are prepared using solvothermal and hydrothermal methods, respectively. ZnO/ND-C3N4/SA nanocomposites are successfully synthesized by employing in-situ polymerization. The presence of essential functional groups is confirmed by Fourier transform infrared (FTIR) spectroscopic analysis. Controlled spherical morphology for ZnO nanoparticles, with an average diameter of ∼52 nm, is shown by Scanning electron microscopic (SEM) analysis, while rice-like grain structure with an average grain size ∼62 nm is exhibited by ND-C3N4 nanoparticles. The presence of required elements is confirmed by Energy dispersive X-ray spectroscopic (EDX) analysis. The crystalline nature of nanocomposites is verified by X-ray diffraction spectroscopic (XRD) analysis. The investigation of the catalytic efficiency for degradation and reduction of various organic dyes is carried out on nanoparticles and nanocomposites. Thorough examination and comparison of parameters, such as apparent rate constant (kapp), reduction time, percentage reduction, reduced concentration and half-life, are conducted for all substrates. The nanocomposites show greater efficiency than nanoparticles in both reactions: catalytic reduction and catalytic degradation.
Collapse
Affiliation(s)
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Touseef Jafar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammara Rasheed
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arslan Bashir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Rahmatpour A, Alijani N, Alizadeh AH. Preparation of chitosan-based ternary nanocomposite hydrogel film by loading graphene oxide nanosheets as adsorbent for enhanced methylene blue dye removal. Int J Biol Macromol 2023; 253:126585. [PMID: 37659481 DOI: 10.1016/j.ijbiomac.2023.126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Our objective in this study is to fabricate a novel chitosan-based ternary nanocomposite hydrogel film by incorporating graphene oxide (GO) nanosheets into a chitosan/partially hydrolyzed polyacrylamide (PHPA) network to boost adsorption efficiency through one step self-assembly process in water. Basically, H-bonding interactions drive the formation of a crosslinking network structure. The Batch adsorption experiments evaluated the hydrogel nanocomposite's MB adsorption performance. By loading GO, surface roughness, swelling percentage (from 21,200 % to 35,800 %), elastic modulus of up to 73.7 Pa, and adsorption characteristics (from 282 mg/g to 468 mg/g) were enhanced. The nanocomposite displayed outstanding thermally/pH responsiveness properties. MB adsorption equilibrium was reached after 45 min and the adsorption capacity was 476.19 mg.g-1 when the initial concentration was 100 mg/L. The MB adsorption kinetics and isotherms by the nanocomposite were well correlated by the PSO and the Langmuir models (R2 > 0.99), respectively. The loaded nanocomposite was shown to be regenerative for five cycles through desorption studies. Thermodynamic analysis indicated that MB adsorption occurred spontaneously (ΔG°: -16.47 kJ/mol, 303 K) and exothermically (ΔH°: -79.49 kJ/mol). A plausible adsorption mechanism was proposed for the nanocomposite developed for MB removal. Our results can contribute to the design and fabrication of nanocomposite adsorbents to treat wastewater.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran.
| | - Naser Alijani
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| | - Amir Hossein Alizadeh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
7
|
Akhtar K, Alhaj AA, Bakhsh EM, Khan SB, Fagieh TM. SnAg 2O 3-Coated Adhesive Tape as a Recyclable Catalyst for Efficient Reduction of Methyl Orange. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6978. [PMID: 37959575 PMCID: PMC10648674 DOI: 10.3390/ma16216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Silver oxide-doped tin oxide (SnAg2O3) nanoparticles were synthesized and different spectroscopic techniques were used to structurally identify SnAg2O3 nanoparticles. The reduction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB), and methyl orange (MO) was studied using SnAg2O3 as a catalyst. Only 1.0 min was required to reduce 95% MO; thus, SnAg2O3 was found to be effective with a rate constant of 3.0412 min-1. Being a powder, SnAg2O3 is difficult to recover and recycle multiple times. For this reason, SnAg2O3 was coated on adhesive tape (AT) to make it recyclable for large-scale usage. SnAg2O3@AT catalyst was assessed toward MO reduction under various conditions. The amount of SnAg2O3@AT, NaBH4, and MO was optimized for best possible reduction conditions. The catalyst had a positive effect since it speed up the reduction of MO by adding more SnAg2O3@AT and NaBH4 as well as lowering the MO concentration. SnAg2O3@AT totally reduced MO (98%) in 3.0 min with a rate constant of 1.3669 min-1. These findings confirmed that SnAg2O3@AT is an effective and useful catalyst for MO reduction that can even be utilized on a large scale for industrial purposes.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (E.M.B.); (S.B.K.); (T.M.F.)
| | | | | | | | | |
Collapse
|
8
|
Anwer AH, Ahtesham A, Shoeb M, Mashkoor F, Ansari MZ, Zhu S, Jeong C. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Adv Colloid Interface Sci 2023; 318:102955. [PMID: 37467558 DOI: 10.1016/j.cis.2023.102955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
The modern eco-friendly materials used in research and innovation today consist of nanocomposites and bio-nanocomposite polymers. Their unique composite properties make them suitable for various industrial, medicinal, and energy applications. Bio-nanocomposite polymers are made of biopolymer matrices that have nanofillers dispersed throughout them. There are several types of fillers that can be added to polymers to enhance their quality, such as cellulose-based fillers, clay nanomaterials, carbon black, talc, carbon quantum dots, and many others. Biopolymer-based nanocomposites are considered a superior alternative to traditional materials as they reduce reliance on fossil fuels and promote the use of renewable resources. This review covers the current state-of-the-art in nanocomposite and bio-nanocomposite materials, focusing on ways to improve their features and the various applications they can be used for. The review article also investigates the utilization of diverse nanocomposites as a viable approach for developing bio-nanocomposites. It delves into the underlying principles that govern the synthesis of these materials and explores their prospective applications in the biomedical field, food packaging, sensing (Immunosensors), and energy storage devices. Lastly, the review discusses the future outlook and current challenges of these materials, with a focus on sustainability.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Afreen Ahtesham
- School of Chemical Sciences University Sains Malaysia, Penang, Malaysia
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shushuai Zhu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
9
|
Akhtar K, Bakhsh EM, Khan SB, Khan M, Asiri AM. SnLa 2O 5 wrapped carboxymethyl cellulose mixed calcium alginate nanocomposite beads for efficient reduction of pollutants. Int J Biol Macromol 2023; 233:123564. [PMID: 36754261 DOI: 10.1016/j.ijbiomac.2023.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
In this project, lanthanum oxide doped tin oxide (SnLa2O5) nanomaterial was prepared and characterized morphologically and physiochemically by different techniques. The catalytic performance of SnLa2O5 was assessed toward catalytic reduction of 4-nitrophenol (4-NP), methyl orange (MO), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). SnLa2O5 was found to be efficient for K3[Fe(CN)6] in the presence of NaBH4, which reduced in only 8.0 min. SnLa2O5 was further wrapped in carboxymethyl cellulose mixed calcium alginate (CMC-Alg) hydrogel beads because the powder catalyst cannot be simply recovered from reaction media to recycle and use again. SnLa2O5 wrapped CMC-Alg (SnLa2O5/CMC-Alg) was assessed for detail analysis of K3[Fe(CN)6] reduction. The effect of NaBH4, K3[Fe(CN)6] concentration and amount of catalyst was optimized using SnLa2O5/CMC-Alg. The amount of catalyst has positive impact on catalytic reduction of K3[Fe(CN)6]. The kinetic study revealed that K3[Fe(CN)6] reduction by SnLa2O5 and SnLa2O5/CMC-Alg was fast, which completed in 8.0 and 4.0 min with rate constant of 0.4283 min-1 and 0.7461 min-1, respectively. These findings indicated that the developed SnLa2O5/CMC-Alg is best and proficient nanocatalyst for K3[Fe(CN)6] reduction. The efficiency along with cost-effective and simple treatment route of the developed nanocatalyst have prospect to compete and replace the reputable commercial catalysts.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Akhtar K, Bahadar Khan S, Bakhsh EM, Asiri AM. A nanocomposite of nickel oxide-tin oxide and carboxymethylcellulose coated cotton fibres for catalytic reduction of water pollutants. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Copper Nanoparticles Decorated Alginate/Cobalt-Doped Cerium Oxide Composite Beads for Catalytic Reduction and Photodegradation of Organic Dyes. Polymers (Basel) 2022; 14:polym14204458. [PMID: 36298035 PMCID: PMC9612068 DOI: 10.3390/polym14204458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Cobalt-doped cerium oxide (Co-CeO2) was synthesized and wrapped inside alginate (Alg) hydrogel beads (Alg/Co-CeO2). Further, copper nanoparticles (Cu) were grown on Alg/Co-CeO2 beads. Cu decorated Alg/Co-CeO2 composite beads (Cu@Alg/Co-CeO2) were tested as a catalyst for the solar-assisted photodegradation and NaBH4-assisted reduction of organic pollutants. Among different dyes, Cu@Alg/Co-CeO2 was found to be the best catalyst for the photodegradation of acridine orange (ArO) under solar light and efficient in reducing methyl orange (MO) with the aid of NaBH4. Cu@Alg/Co-CeO2 decolorized ArO up to 75% in 5 h under solar light, while 97% of MO was reduced in 11 min. The decolorization efficiency of Cu@Alg/Co-CeO2 was further optimized by varying different parameters. Thus, the designed catalyst provides a promising way for efficient oxidation and reduction of pollutants from industrial effluents.
Collapse
|
12
|
Simultaneous removal of cationic dyes from simulated industrial wastewater using sulfated alginate microparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Bakhsh EM, Khan MSJ, Akhtar K, Khan SB, Asiri AM. Chitosan hydrogel wrapped bimetallic nanoparticles based efficient catalysts for the catalytic removal of organic pollutants and hydrogen production. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | | | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah Saudi Arabia
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
14
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
15
|
Kamal T, Khalil A, Bakhsh EM, Khan SB, Chani MTS, Ul-Islam M. Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. Int J Biol Macromol 2022; 206:917-926. [PMID: 35304202 DOI: 10.1016/j.ijbiomac.2022.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
This study reports the synthesis of bacterial cellulose (BC) hydrogel sheets and their utilization as a support for silver‑nickel oxide nanocomposites (Ag/NiO). A two-step facile hydrothermal method was employed for the preparation of Ag/NiO, followed by impregnation into BC hydrogel sheets. A 20% Ag/NiO composition was revealed by dry weight analysis. The stability of nanocomposites-Hydrogel was confirmed by Ag+ and Ni2+ ion release study. The catalytic activity of the BC-Ag/NiO was evaluated against chemical reduction of congo red, methyl orange and methylene blue. The reduction reaction followed pseudo first order kinetics and kapp values of 0.1147 min-1, 0.1323 min-1 and 0.12989 min-1 were obtained for CR, MO, and MB dyes, respectively. The BC-Ag/NiO catalyst could be easily recovered and re-used in another reaction without centrifugation. The synthesized nanocomposites hydrogel was also tested for its antibacterial activity against Gram-negative bacteria, Escherichia coli (E.coli) and Gram-positive bacteria, Staphylococcus aureus (S.aureus).
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia..
| | - Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
16
|
Khan SB, Akhtar K, Bakhsh EM, Kamal T, Asiri AM. Alginate biopolymer as a reactor container for copper oxide-tin oxide: Efficient nanocatalyst for reduction of different pollutants. CHEMOSPHERE 2022; 291:132811. [PMID: 34762883 DOI: 10.1016/j.chemosphere.2021.132811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The need of clean water demands to design an efficient catalytic system with high effective and selective reduction of water pollutants. Here, we successfully prepared copper oxide-tin oxide (CuO-SnO2) nanomaterial and further wrapped in Na-alginate hydrogel (Alg/CuO-SnO2). CuO-SnO2 and Alg/CuO-SnO2 were characterized by FESEM, EDS, FTIR-ATR, and XRD and tested for the reduction of water pollutants. The catalytic ability of CuO-SnO2 and Alg/CuO-SnO2 was examined for numerous pollutants like 4-nitrophenol (4-NP), methyl orange (MO), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]) where the designed CuO-SnO2 and Alg/CuO-SnO2 nanocatalysts were most selective toward MB reduction. Further on optimization of catalyst amount, stability, and reducing agent amount, it was found that the increase of nanocatalyst amount and NaBH4 concentration increase the rate of MB reduction. CuO-SnO2 and Alg/CuO-SnO2 nanocatalysts reduced MB in 3.0 min with reaction rate constants (kapp) of 1.2944 min-1 and 1.2715 min-1, respectively. Additionally, Alg/CuO-SnO2 nanocatalyst was easily recovered by simply pulling hydrogel after completion of reaction and reused four times with no loss in efficiency. Besides, Alg/CuO-SnO2 nanocatalyst was further investigated in real samples like sea water, irrigation water, well water, university wastewater and found effective for MB reduction even in real samples.
Collapse
Affiliation(s)
- Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|