1
|
Dong X, Sun S, Wang X, Yu H, Dai K, Jiao J, Peng C, Ji H, Peng L. Structural characteristics and intestinal flora metabolism mediated immunoregulatory effects of Lactarius deliciosus polysaccharide. Int J Biol Macromol 2024; 278:135063. [PMID: 39187112 DOI: 10.1016/j.ijbiomac.2024.135063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Lactarius deliciosus, a widely appreciated mushroom with delightful tastes and texture, has exhibited immunomodulatory activity in vitro, while the effects on intestinal flora metabolisms in vivo are ambiguous. In this study, a L. deliciosus polysaccharide (LDP) was extracted and purified, and the structural characteristics were evaluated, as well as the immunological enhancement on tumor-bearing mice through regulating intestinal flora metabolisms. Results showed that LDP was a heteropolysaccharide (average molecular weight of 1.44 × 107 Da) with a backbone of α-(1 → 6)-Manp and branches of α-(1 → 6)-Galp, α-(1 → 3)-Fucp, α-(1 → 6)-Glcp, α-(1 → 4)-Glcp. Animal experiments indicated that LDP could significantly protect immune organs of tumor-beraing mice and suppress solid tumors growth with inhibitory rate of 51.61 % (high-dose, 100 mg/kg), and improve the intestinal lactobacillus contents, promote adenine mediated zeatin biosynthesis, then competitively antagonize A2A receptor and enhance the activities of CD4+ T cells and CD8+ T cells, finally effectively facilitate the apoptosis and elimination of tumor cells. These results would provide powerful data supports for the further antitumor mechanisms development and practical applications of L. deliciosus polysaccharide in food and drug industries.
Collapse
Affiliation(s)
- Xiaodan Dong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Sujun Sun
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinkun Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Huanjie Yu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Keyao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianshuang Jiao
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chune Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Haiyu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
2
|
Pan Y, Liu C, Jiang S, Guan L, Liu X, Wen L. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. ULTRASONICS SONOCHEMISTRY 2024; 108:106961. [PMID: 38936294 PMCID: PMC11260389 DOI: 10.1016/j.ultsonch.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.
Collapse
Affiliation(s)
- Ying Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Chunjuan Liu
- Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Shuo Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
3
|
Wang F, Li N, Li H, Di Y, Li F, Jiang P, Wang G. An alkali-extracted neutral heteropolysaccharide from Phellinus nigricans used as an immunopotentiator in immunosuppressed mice by activating macrophages. Carbohydr Polym 2024; 335:122110. [PMID: 38616084 DOI: 10.1016/j.carbpol.2024.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A neutral heteropolysaccharide (PNANb) was isolated with alkali (0.1 M NaOH) from mycelia of Phellinus nigricans, and the structure, immunostimulating activity and some of the underlying molecular mechanisms of action of PNANb were explored in the current study. PNANb (14.95 kDa) predominantly consisted of Gal, Glc, and Man with minor Fuc. GC-MS and NMR analyses indicated that the backbone of PNANb was mainly composed of 6-α-Galp, 2,6-α-Galp with minor 3,6-β-Glcp, which was substituted with complex side chains at C-2 of 2,6-α-Galp and C-3 of 3,6-β-Glcp. Notably, PNANb (50 or 100 mg/kg) possessed immunoprotective effects in cyclophosphamide (Cy)-induced immunosuppressed C57BL/6 mice, which was supported by evidence including the enhancement of spleen and thymus indices, levels of serum immunoglobulins (IgG, IgM) and cytokines (IFN-γ, IL-2, IL-4, IL-10), and macrophage activity. However, the immunostimulation effects of PNANb were decreased when macrophages were depleted, underscoring the essential role of macrophages in the beneficial effects of PNANb in Cy-induced immunosuppressed mice. Further investigations in vitro indicated that PNANb activated macrophages through MAPK/NF-κB signaling pathways mediated by Toll-like receptor 4. Therefore, PNANb can serve as a prospective immunopotentiator in immunosuppression.
Collapse
Affiliation(s)
- Feihe Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Na Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hong Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yao Di
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Fan Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Peng Jiang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Guiyun Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
4
|
Tian J, Zhang Z, Shang Y, Zheng Y. Extraction, structure and antioxidant activity of the polysaccharides from morels (Morchella spp.): A review. Int J Biol Macromol 2024; 264:130656. [PMID: 38453116 DOI: 10.1016/j.ijbiomac.2024.130656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Morels (Morchella spp.), which are cultivated only in a few regions of the world, are edible mushrooms known for their various properties including antioxidation, immune regulation, antiinflammation, and antitumor effects. Polysaccharides from Morchella are principally responsible for its antioxidant activity. This paper reviews the extraction, purification, structural analysis and antioxidant activity of Morchella polysaccharides (MPs), providing updated research progress. Meanwhile, the structural-property relationships of MPs were further discussed. In addition, based on in vitro and in vivo studies, the major factors responsible for the antioxidant activity of MPs were summarized including scavenging free radicals, reduction capacity, inhibitory lipid peroxidation activity, regulating the signal transduction pathway, reducing the production of ROS and NO, etc. Finally, we hope that our research can provide a reference for further research and development of MPs.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Yi Zheng
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
5
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
6
|
Jiang S, Wang Q, Wang Z, Borjigin G, Sun J, Zhao Y, Li Q, Shi X, Faizan Ali Shah S, Wang X, Gan C, Wu Y, Song X, Li Q, Yang C. Ultrasound-assisted polysaccharide extraction from Fritillaria ussuriensis Maxim. and its structural characterization, antioxidant and immunological activity. ULTRASONICS SONOCHEMISTRY 2024; 103:106800. [PMID: 38359575 PMCID: PMC10878995 DOI: 10.1016/j.ultsonch.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Fritillaria ussuriensis Maxim. (F.M.) has been widely used in both food and medication for more than 2000 years. In order to achieve its comprehensive utilization and investigate the structural characterization and biology activity, response surface methodology (RSM) was used to optimize the ultrasound-assisted extraction conditions of F.M. polysaccharides. The optimal extraction conditions were ultrasonic power of 174.2 W, ratio of liquid to material of 40.7 mL/g and ultrasonic time of 82.0 min. In addition, a neutral polysaccharide F-1 was obtained, and its structure characterization, antioxidant and immunological activity were evaluated. The structural properties of the polysaccharide were characterized by UV, IR, GC-MS, NMR and AFM. Monosaccharide composition of F-1 (MW 18.11 kDa) was rhamnose, arabinose, glucosamine hydrochloride, galactose, and glucose which under the ratio of 0.9: 3.8: 0.2: 2.9: 92.2. The fractions of F-1 were mainly linked by → 6)-α-D-Glcp-(1 → with branch chain α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → and 4,6)-α-D-Glcp-(1 → residues. Moreover, F-1 has a significant scavenging activity, which can clear hydroxyl radicals, superoxide anion, DPPH and ABTS. In addition, the immunological activity showed that F-1 had an effect on macrophage phagocytic activity. And it can increase the release of inflammatory factors including TNF-α, IL-1β and IL-6. F-1 is a novel polysaccharide with significant activity in antioxidant and immunological activity, which has great potential for antioxidant and immunizer in food, pharmaceutical and cosmetic industries. The study can provide a methodological basis for polysaccharide research and theoretical basis for the industrialized production and practical application.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qianbo Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Gilwa Borjigin
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yue Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qi Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xuepeng Shi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Syed Faizan Ali Shah
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaodan Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
7
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Liang J, Rao ZH, Jiang SL, Wang S, Kuang HX, Xia YG. Structure of an unprecedent glucuronoxylogalactoglucomannan from fruit bodies of Auricularia auricula-judae (black woody ear). Carbohydr Polym 2023; 315:120968. [PMID: 37230634 DOI: 10.1016/j.carbpol.2023.120968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
An unprecedent glucuronoxylogalactoglucomannan (GXG'G″M), ME-2 (Mw, 2.60 × 105 g/mol; O-acetyl % = 16.7 %), was isolated and purified from water extracts of Auricularia auricula-judae (black woody ear). Firstly, due to much higher O-acetyl contents, we prepared its fully deacetylated products (dME-2; Mw, 2.13 × 105 g/mol) for convenient structure survey. The repeating structure-unit of dME-2 was readily proposed based on Mw determination, monosaccharide compositions, methylation analysis, free-radical degradation and 1/2D NMR spectroscopy. The dME-2 was identified as a highly branched polysaccharide with an average of 10 branches per 10 sugar backbone units. The backbone was only repeating →3)-α-Manp-(1→ residues, substituted at the C-2, C-6 and C-2,6 positions. The side chains included β-GlcAp-(1→, β-Xylp-(1→, α-Manp-(1→, α-Galp-(1→ and β-Glcp-(1→. Secondly, the complex substituted positions of O-acetyl groups in ME-2 were determined to be at C-2, C-4, C-6 and C-4,6 in the backbone and at C-2 and C-2,3 in some side chains. Finally, the anti-inflammatory activity of ME-2 was preliminarily explored on LPS-stimulated THP-1 cells. The above date not only provided the first example for structural studies of GXG'G″M type polysaccharides, but also facilitated development and application of black woody ear polysaccharides as medicinal agents or functional dietary supplements.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Zi-Hao Rao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
9
|
Zhang J, Zhao J, Liu G, Li Y, Liang L, Liu X, Xu X, Wen C. Advance in Morchella sp. polysaccharides: Isolation, structural characterization and structure-activity relationship: A review. Int J Biol Macromol 2023; 247:125819. [PMID: 37455001 DOI: 10.1016/j.ijbiomac.2023.125819] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Morchella sp. is a kind of precious medicinal and edible fungus with a unique flavor and is rich in various amino acids and organic germanium needed by the human body. Most notably, Morchella sp. polysaccharides have attracted widespread attention due to their significant bioactivity in recent years. At present, extensive studies have been carried out on the extraction methods, structural characterization and activity evaluation of Morchella sp. polysaccharides, which provides a good theoretical basis for its further development and application. However, the systematic summary of the related research of Morchella sp. polysaccharides has not been reported yet. Therefore, this review mainly focused on the isolation and purification methods, structural characterization, biological activities and structure-activity relationship of Morchella sp. polysaccharides. This work will help to have a better in-depth understanding of Morchella sp. polysaccharides and provide a scientific basis and direct reference for more scientific and rational applications.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
10
|
Huang C, Tu W, Zhang M, Peng D, Guo Z, Huang W, Zhu J, Yu R, Song L, Wang Y. A novel heteropolysaccharide isolated from custard apple pulp and its immunomodulatory activity in mouse macrophages and dendritic cells. Heliyon 2023; 9:e18521. [PMID: 37554813 PMCID: PMC10404978 DOI: 10.1016/j.heliyon.2023.e18521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In this study, a novel heteropolysaccharide (ASPA80-1) with an average molecular weight of 5.48 × 104 Da was isolated and structurally elucidated from custard apple pulp (Annona squamosa) through DEAE-cellulose, Sephadex G-100 and Sephacryl S-300 HR chromatography and spectral analysis. ASPA80-1 is a water-soluble polysaccharide and it is a polymer consisting of predominant amounts of (1 → 3)-linked-L-arabinose (Ara) residues, small amounts of (1 → 6)-linked-D-galactose (Gal), (1 → 3,5)-linked-L-arabinose (Ara) residues and terminal linked-L-arabinose (Ara) residues, trace amount of (1 → 4)-linked-D-glucose (Glc) residues and (1 → 2)-linked-L-rhamnose (Rham) residues. ASPA80-1 showed significant effect on antigen-presenting cells (APCs) activation. On the one hand, ASPA80-1 activated RAW264.7 macrophage cells by inducing morphology change, enhancing phagocytic ability, increasing nitric oxide (NO) secretion and promoting expression of major histocompatibility complex class II (MHC II) and cluster of differentiation 86 (CD 86). On the other hand, ASPA80-1 promoted the maturation of dendritic cells (DCs) by inducing longer dendrites, decreasing phagocytic ability and increasing MHC II and CD86 expression. Furthermore, mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways were activated after the intervention of ASPA80-1 on RAW264.7 cells or DCs. Thus, the novel heteropolysaccharide ASPA80-1 has the potential to be used as an immunoenhancing component in functional foods.
Collapse
Affiliation(s)
- Chunhua Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wensong Tu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Man Zhang
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dan Peng
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongyi Guo
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
11
|
Tian B, Wang P, Xu T, Cai M, Mao R, Huang L, Sun P, Yang K. Ameliorating effects of Hericium erinaceus polysaccharides on intestinal barrier injury in immunocompromised mice induced by cyclophosphamide. Food Funct 2023; 14:2921-2932. [PMID: 36892225 DOI: 10.1039/d2fo03769f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Hericium erinaceus is a kind of large fungus with rich nutrition and its polysaccharides exhibit various biological activities. In recent years, widespread interest has been focused on maintaining or improving intestinal health through the consumption of edible fungi. Studies have shown that hypoimmunity can damage the intestinal barrier, which in turn seriously affects human health. The aim of this work was to investigate the ameliorative effects of Hericium erinaceus polysaccharides (HEPs) on intestinal barrier damage in cyclophosphamide (CTX)-induced immunocompromised mice. The results showed that the HEP effectively increased the levels of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD), and decreased malondialdehyde (MDA) content in the liver tissues of mice. In addition, the HEP restored the immune organ index, increased the serum levels of IL-2 and IgA, augmented the mRNA expression levels of intestinal Muc2, Reg3γ, occludin and ZO-1, and reduced intestinal permeability in mice. It was further confirmed by an immunofluorescence assay that the HEP enhanced the expression level of intestinal tight junction proteins to protect the intestinal mucosal barrier. These results suggested that the HEP could reduce intestinal permeability and enhance intestinal immune functions by increasing antioxidant capacity, tight junction proteins and immune-related factors in CTX-induced mice. In conclusion, the HEP effectively ameliorated CTX-induced intestinal barrier damage in immunocompromised mice, which provides a new application direction for the HEP as a natural immunopotentiator with antioxidant function.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co. Ltd, Quzhou 324207, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou 324200, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China.
| |
Collapse
|
12
|
Li Y, Chen H, Zhang X. Cultivation, nutritional value, bioactive compounds of morels, and their health benefits: A systematic review. Front Nutr 2023; 10:1159029. [PMID: 37006947 PMCID: PMC10063854 DOI: 10.3389/fnut.2023.1159029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Morels are valuable mushrooms being used as foods and medical substances for a long history. The commonly cultivated morel species include M. eximia, M. importuna, and M. sextelata in China, M. conica and M. esculenta in the US. Morels' nutritional profile mainly consists of carbohydrates, proteins, fatty acids, vitamins, minerals, and organic acids, which are also responsible for its complex sensory attributes and health benefits. The bioactive compounds in morels including polysaccharides, phenolics, tocopherols, and ergosterols contribute to the anti-oxidative abilities, anti-inflammation, immunoprotection, gut health preservation, and anti-cancer abilities. This review depicted on the cultivation of morels, major bioactive compounds of different morel species both from fruit bodies and mycelia, and their health benefits to provide a comprehensive understanding of morels and support the future research and applications of morels as high-value functional food sources.
Collapse
Affiliation(s)
- Yitong Li
- Bannerbio Nutraceuticals Inc., Shenzhen, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xi Zhang
- Bannerbio Nutraceuticals Inc., Shenzhen, China
- *Correspondence: Xi Zhang
| |
Collapse
|
13
|
Shi H, Li J, Liu F, Bi S, Huang W, Luo Y, Zhang M, Song L, Yu R, Zhu J. Characterization of a novel polysaccharide from Arca subcrenata and its immunoregulatory activities in vitro and in vivo. Food Funct 2023; 14:822-835. [PMID: 36622059 DOI: 10.1039/d2fo03483b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Arca subcrenata is an economical edible shellfish. A novel water-soluble α-D-glucan (ASPG-1) with a molecular weight of 2.56 × 106 Da was purified and characterized from A. subcrenata. Its structure was characterized as a repeating unit consisting of α-D-Glcp, (1 → 6)-α-D-Glcp and (1 → 4,6)-α-D-Glcp. ASPG-1 exerted potent immunoregulatory activity by promoting the viability of splenic lymphocytes. Moreover, it enhanced pinocytic capacity, and promoted the secretion of NO and cytokines in RAW264.7 cells. The immunomodulatory mechanism of ASPG-1 involved the activation of the TLR4-MAPK/Akt-NF-κB signaling pathway. ASPG-1 inhibited tumor growth in 4T1 breast cancer mice and its combination with doxorubicin increased antitumor efficacy. The ASPG-1 combination with DOX-treated group (64.8%) showed an improved tumor inhibition rate compared to that of the DOX-treated group (53.3%). The antitumor mechanism of ASPG-1 may involve an enhancement of the immune response of mice to tumors. These results indicated that ASPG-1 could be developed as a potential adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Jianhuan Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Sixue Bi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Yuanyuan Luo
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| |
Collapse
|
14
|
Ramya H, Ravikumar KS, Ajith TA, Fathimathu Z, Janardhanan KK. Anticancer Activity of the Bioactive Extract of the Morel Mushroom (Morchella elata, Ascomycetes) from Kashmir Himalaya (India) and Identification of Major Bioactive Compounds. Int J Med Mushrooms 2023; 25:41-52. [PMID: 37831511 DOI: 10.1615/intjmedmushrooms.2023050169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Morel mushrooms, Morchella species are highly nutritional, excellently edible and medicinal. Anticancer activity of M. elata, growing in forests of Kashmir Himalaya was studied. Ethyl acetate extract of fruiting bodies of M. elata (MEAE) was evaluated for cytotoxicity by MTT assay using Daltons lymphoma ascites (DLA), human colon cancer (HCT-116) and normal cell lines. Anti-carcinogenic and antiangiogenic activities of MEAE were tested using mouse models. Proapoptotic activity was detected by double staining of acridine orange-ethidium bromide assay. MEAE was partially purified by column chromatography and the bioactive compounds were identified by LC-MS analysis. The bioactive extract of M. elata showed significant cytotoxicic activity against DLA (P < 0.05), HCT-116 cell lines (P < 0.05) and did not possess appreciable adverse effect on the viability of normal cells. At a concentration of 100 µg/mL, 60% cell death was observed in HCT-116 cell line while 80% cell death was found in DLA cell line. The extract also possessed profound anticarcinogenic, antiangiogenic and proapoptotic activities. LC-MS analysis showed celastrol (RT 9.504, C29H38O4, MW 450.27), convallatoxin (RT 9.60, C29H42O10, MW 550.27), cucurbitacin A (RT 11.97, C32H46O9, MW 574.71) and madecassic acid (RT 14.35, C30H48O6, MW 504.70) as the major bioactive components. Current experimental studies indicated that bioactive extract of M. elata possessed significant anticancer activity. Being an excellently edible mushroom, the potential therapeutic use of M. elata and its bioactive extract in complementary therapy of cancer is envisaged.
Collapse
Affiliation(s)
| | | | | | - Zuhara Fathimathu
- Department of Life Sciences, University of Calicut, Thenjipalam 673636, India
| | | |
Collapse
|
15
|
Zhang N, Yang B, Mao K, Liu Y, Chitrakar B, Wang X, Sang Y. Comparison of structural characteristics and bioactivity of Tricholoma mongolicum Imai polysaccharides from five extraction methods. Front Nutr 2022; 9:962584. [PMID: 35990341 PMCID: PMC9389156 DOI: 10.3389/fnut.2022.962584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tricholoma mongolicum Imai is an edible fungus rich in various health-promoting compounds, such as polysaccharides, polypeptides, polyunsaturated fatty acids, etc., and among them, polysaccharides have gotten more attention in recent research trends. This study explored the extraction of polysaccharides from T. mongolicum Imai by five extraction methods, including hot water extraction, ultrasound extraction, enzyme-assisted extraction, 0.1 M HCL extraction, and 0.1 M NaOH extraction. The effects of these extraction methods on the yield, chemical structure, apparent morphology, and the antioxidant activities of Tricholoma mongolicum Imai polysaccharides (TMIPs) were investigated in this study. The data showed that 0.1 M NaOH extraction produced the highest extraction yield compared to the other extraction methods. The results of high-performance gel permeation chromatography (HPGPC) and scanning electron microscopy (SEM) showed that different extraction methods had significant effects on the molecular weight and morphology of TMIPs. The results of Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis showed that the extraction methods had no significant difference in functional groups, crystal structure, and thermal stability of TMIPs. The antioxidant activity of TMIPs extracted by ultrasound extraction was more prominent among the five polysaccharides, which might be related to a large number of low-molecular-weight components in molecular weight distribution.
Collapse
Affiliation(s)
- Nan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yuwei Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Feng JY, Xie YQ, Zhang P, Zhou Q, Khan A, Zhou ZH, Xia XS, Liu L. Hepatoprotective Polysaccharides from Geranium wilfordii: Purification, Structural Characterization, and Their Mechanism. Molecules 2022; 27:molecules27113602. [PMID: 35684541 PMCID: PMC9182495 DOI: 10.3390/molecules27113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional Chinese Medicine is generally used as a decoction to guard health. Many active ingredients in the decoction are chemical ingredients that are not usually paid attention to in phytochemical research, such as polysaccharides, etc. Based on research interest in Chinese herbal decoction, crude polysaccharides from G. wilfordii (GCP) were purified to obtain two relatively homogeneous polysaccharides, a neutral polysaccharide (GNP), and an acid polysaccharide (GAP) by various chromatographic separation methods, which were initially characterized by GC-MS, NMR, IR, and methylation analysis. Studies on the hepatoprotective activity of GCP in vivo showed that GCP might be a potential agent for the prevention and treatment of acute liver injury by inhibiting the secretion levels of ALT, AST, IL-6, IL-1β, TNF-α, and MDA expression levels, increasing SOD, and the GSH-Px activity value. Further, in vitro assays, GNP and GAP, decrease the inflammatory response by inhibiting the secretion of IL-6 and TNF-α, involved in the STAT1/T-bet signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Feng
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Yan-Qing Xie
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Peng Zhang
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Qian Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Afsar Khan
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Zhi-Hong Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Xian-Song Xia
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| | - Lu Liu
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| |
Collapse
|
17
|
Structure Identification of Two Polysaccharides from Morchella sextelata with Antioxidant Activity. Foods 2022; 11:foods11070982. [PMID: 35407069 PMCID: PMC8997402 DOI: 10.3390/foods11070982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Mushrooms of the Morchella genus exhibit a variety of biological activities. Two polysaccharides (MSP1-1, 389.0 kDa; MSP1-2, 23.4 kDa) were isolated from Morchella sextelata by subcritical water extraction and column chromatography fractionation. Methylation and nuclear magnetic resonance analysis determined MSP1-1 as a glucan with a backbone of (1→4)-α-D-glucan branched at O-6, and MSP1-2 as a galactomannan with coextracted α-glucan. Light scattering analysis and transmission electron microscopy revealed that MSP1-1 possessed a random coil chain and that MSP1-2 had a network chain. This is the first time that a network structure has been observed in a polysaccharide from M. sextelata. Despite the differences in their chemical structures and conformations, both MSP1-1 and MSP1-2 possessed good thermal stability and showed antioxidant activity. This study provides fundamental data on the structure-activity relationships of M. sextelata polysaccharides.
Collapse
|
18
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|