1
|
Moshfeghi T, Najmoddin N, Arkan E, Hosseinzadeh L. A multifunctional polyacrylonitrile fibers/alginate-based hydrogel loaded with chamomile extract and silver sulfadiazine for full-thickness wound healing. Int J Biol Macromol 2024; 279:135425. [PMID: 39245113 DOI: 10.1016/j.ijbiomac.2024.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Most conventional wound dressings do not meet the clinical requisites owing to their limited multifunctionality. Herein, a bilayer wound dressing containing both hydrogel and fibrous structures with multifunctional features was developed for effective skin rehabilitation. Sodium alginate (SA)/gelatin (Gel) hydrogel comprising Matricaria chamomilla L extract and silver sulfadiazine (AgSD) drug as antibacterial agents was cross-linked using genipin and CaCl2. Then, the surface of the hydrogel was covered by electrospun polyacrylonitrile (PAN) nanofibers to fabricate a bilayer dressing. FESEM images revealed formation of continuous, smooth, and bead-free PAN nanofibers with excellent compatibility between hydrogel and fibers. The bilayer wound dressing exhibited satisfactory mechanical virtues including elastic modulus (2.4 ± 0.2 MPa), tensile strength (6.2 ± 0.5 MPa) and elongation at break (21.8 ± 1 %) as well as suitable swelling ratio. Such bilayer dressing revealed biodegradability, cytocompatibility and effective antibacterial performance against gram positive and gram negative strains. Release kinetics of AgSD drug followed a Fickian diffusion mechanism, ensuring sustained drug release. In vivo studies demonstrated bilayer dressing could promote rate of wound closure, re-epithelialization and collagen deposition, facilitating the replacement of damaged skin with healthy tissue. Such engineered wound dressing has a high potency for inducing skin repair and could be used in skin tissue engineering.
Collapse
Affiliation(s)
- Tahereh Moshfeghi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Akgul B, Gulcan C, Tornaci S, Erginer M, Toksoy Oner E, Abamor ES, Acar S, Allahverdiyev AM. Manufacturing Radially Aligned PCL Nanofibers Reinforced With Sulfated Levan and Evaluation of its Biological Activity for Healing Tympanic Membrane Perforations. Macromol Biosci 2024:e2400291. [PMID: 39461894 DOI: 10.1002/mabi.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Indexed: 10/29/2024]
Abstract
The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.
Collapse
Affiliation(s)
- Busra Akgul
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Cansu Gulcan
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selay Tornaci
- IBSB, Department of Bioengineering, Marmara University, Istanbul, 34854, Turkey
| | - Merve Erginer
- Institute of Nanotechnology and Biotechnology, Istanbul University-Cerrahpaşa, Istanbul, 34500, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, 34220, Turkey
| | - Ebru Toksoy Oner
- IBSB, Department of Bioengineering, Marmara University, Istanbul, 34854, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Serap Acar
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Adil M Allahverdiyev
- The V. Akhundov Scientific Research Medical Preventive Institute, Baku, AZ1004, Azerbaijan
| |
Collapse
|
3
|
Chundayil Kalathil N, Shah MR, Lailakumari VC, Prabhakaran P, Kumarapilla H, Kumar GSV. 3D Bilayered Hydrogel and Nanofiber Multifunctional Sponge Dressing: An Efficacious Healing Agent for Chronic Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:6492-6505. [PMID: 39271646 DOI: 10.1021/acsabm.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Chronic wound management using biomaterial-based dressings has significantly impacted the standard and efficiency of wound healing. However, various available wound healing aids are ineffective in treating deep open injuries and chronic wounds such as diabetic wounds. Herein, we developed a 3D bilayered multifunctional sponge, which addresses the structural and functional issues faced by biomaterial dressings in treating deep and chronic wounds. The 3D bilayered sponge consists of a hydrogel base functionalized with wound healing peptide (Tylotoin)-carrying nanoparticles and topped with a nanofiber layer functionalized with an antimicrobial peptide (LLKKK18). The 3D bilayered sponge, with its highly porous, elastic, and enhanced fluid absorption ability, makes it a suitable wound treatment aid. The developed multifunctional 3D sponge shows antibacterial action and promotes a microenvironment similar to the extracellular matrix (ECM) in regulating dermal cell survival and migration. Study in a full-thickness skin defect diabetic mouse model has shown that the developed 3D bilayered sponge accelerated wound closure and promoted functional skin regeneration through reduced inflammation, faster granulation tissue formation, re-epithelialization, neovascularization, and skin appendage restoration, which make the developed 3D bilayered multifunctional sponge an efficient and advanced chronic wound management aid with potential for future clinical application.
Collapse
Affiliation(s)
- Nanditha Chundayil Kalathil
- Nano Drug Delivery Systems (NDDS), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | - Manan Rakesh Shah
- Nano Drug Delivery Systems (NDDS), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
| | - Vipin Chandrasekharan Lailakumari
- Nano Drug Delivery Systems (NDDS), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
- Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana 121001, India
| | - Priya Prabhakaran
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Harikrishnan Kumarapilla
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | | |
Collapse
|
4
|
Xiao A, Jiang X, Hu Y, Li H, Jiao Y, Yin D, Wang Y, Sun H, Wu H, Lin L, Chang T, Liu F, Yang K, Huang Z, Sun Y, Zhai P, Fu Y, Kong S, Mu W, Wang Y, Yu X, Chang L. A Degradable Bioelectronic Scaffold for Localized Cell Transfection toward Enhancing Wound Healing in a 3D Space. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404534. [PMID: 39183503 DOI: 10.1002/adma.202404534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Indexed: 08/27/2024]
Abstract
Large skin wounds, with extensive surface area and deep vertical full-thickness involvement, can pose significant challenges in clinical settings. Traditional routes for repairing skin wounds encompass three hallmarks: 1) scab formation for hemostasis; 2) proliferation and migration of epidermal cells for wound closure; 3) proliferation, migration, and functionalization of fibroblasts and endothelial cells for dermal remodeling. However, this route face remarkable challenges to healing large wounds, usually leading to disordered structures and loss of functions in the regenerated skin, due to limited control on the transition among the three stages. In this work, an implantable bioelectronics is developed that enables the synchronization of the three stages, offering accelerated and high-quality healing of large skin wounds. The system efficiently electro-transfect local cells near the wounds, forcing cellular proliferation, while providing a 3D porous environments for synchronized migration of epidermal and dermal cells. In vivo experiments demonstrated that the system achieved synchronous progression of multiple layers within the wounds, leading to the reconstruction of a complete skin structure similar to healthy skin, which presents a new avenue for the clinical translation of large wound healing.
Collapse
Affiliation(s)
- Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yongyan Hu
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Dedong Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Yuqiong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Tianrui Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Penghua Zhai
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yao Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Shenshen Kong
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Yi Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
5
|
Jamali SA, Mohammadi M, Saeed M, Haramshahi SMA, Shahmahmoudi Z, Pezeshki-Modaress M. Biomimetic fiber/hydrogel composite scaffolds based on chitosan hydrogel and surface modified PCL chopped-microfibers. Int J Biol Macromol 2024; 278:134936. [PMID: 39179082 DOI: 10.1016/j.ijbiomac.2024.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Hydrogel/fiber composites have received wide attention as tissue engineering scaffolds due to the outstanding properties of fibers and hydrogels. In the current research, a hydrogel/fiber composite scaffold was made based on chitosan-modified polycaprolactone (PCL) microfibers and chitosan hydrogel as a binder. The presence of chitosan as a modifier on the surface of fibers and as a binder between fibers can create scaffolds with excellent structural and mechanical properties. To this end, the three-dimensional microfibers were first functionalized with amine groups. Then, the chitosan chains were attached to the fibers by an aldehyde coupling agent and Schiff base reaction. FTIR and Raman spectroscopies corroborated that chitosan was successfully immobilized on PCL fibers. Chitosan-modified fibers were molded with chitosan solutions of various concentrations and the prepared composite scaffolds were stabilized using ionic crosslinking. The obtained composites represented a porous 3D structure with highly interconnected pores. The compressive modulus increased by 19 and 2.7 folds and the tensile modulus was augmented by 28 and 4 folds, in respective dry and swollen states with increasing hydrogel concentration from 0.1 to 1 %. Hydrogel/fiber composites were able to preserve cell viability, and increasing the hydrogel proportion increased adhesion, proliferation and penetration of cells into the scaffold.
Collapse
Affiliation(s)
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Qom University of Technology, Qom, Iran.
| | - Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shahmahmoudi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Akbarpour A, Rahimnejad M, Sadeghi-Aghbash M, Feizi F. Bioactive nanofibrous mats constructs: Separate efficacy of Lawsonia inermis and Scrophularia striata extracts in PVA/alginate matrices for enhanced wound healing. Int J Biol Macromol 2024; 277:134545. [PMID: 39116967 DOI: 10.1016/j.ijbiomac.2024.134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The study explores the use of electrospinning technology to create advanced wound dressing materials by integrating natural extracts from Lawsonia inermis (LI) and Scrophularia striata (SS) into nanofibrous matrices composed of Polyvinyl Alcohol (PVA) and Alginate (ALG). These macromolecular complexes aim to leverage the unique properties of the botanical extracts for wound healing purposes. The research assesses the physical, chemical, and mechanical attributes of the nanofibrous constructs as well as their antimicrobial activities and ability to promote wound repair. Evaluation of Cellular Viability and Cytotoxicity (MTT) tests showed high biocompatibility of the nanofibrous mats, with cell viability percentages of 92 % for LI-loaded mats and 89 % for SS-loaded mats. The antibacterial rate of extract-containing mats was 70 % higher than non-extract-containing mats. In vivo assessments on rat models with burn injuries demonstrated that mats containing LI and SS extracts substantially accelerate tissue regeneration and overall healing. Nanofibrous mats containing LI extract showed a 45 % faster wound healing process than the control, while those containing SS extract showed a 40 % improvement. Overall, the study highlights the potential of PVA/ALG nanofibrous mats augmented with LI and SS extracts as effective platforms for wound management, offering enhanced properties for superior healing outcomes.
Collapse
Affiliation(s)
- Ali Akbarpour
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
7
|
Han Y, Wei H, Ding Q, Ding C, Zhang S. Advances in Electrospun Nanofiber Membranes for Dermatological Applications: A Review. Molecules 2024; 29:4271. [PMID: 39275118 PMCID: PMC11396802 DOI: 10.3390/molecules29174271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
In recent years, a wide variety of high-performance and versatile nanofiber membranes have been successfully created using different electrospinning methods. As vehicles for medication, they have been receiving more attention because of their exceptional antibacterial characteristics and ability to heal wounds, resulting in improved drug delivery and release. This quality makes them an appealing choice for treating various skin conditions like wounds, fungal infections, skin discoloration disorders, dermatitis, and skin cancer. This article offers comprehensive information on the electrospinning procedure, the categorization of nanofiber membranes, and their use in dermatology. Additionally, it delves into successful case studies, showcasing the utilization of nanofiber membranes in the field of skin diseases to promote their substantial advancement.
Collapse
Affiliation(s)
- Yuanyuan Han
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Hewei Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| |
Collapse
|
8
|
Song Y, Hu Q, Liu S, Wang Y, Zhang H, Chen J, Yao G. Electrospinning/3D printing drug-loaded antibacterial polycaprolactone nanofiber/sodium alginate-gelatin hydrogel bilayer scaffold for skin wound repair. Int J Biol Macromol 2024; 275:129705. [PMID: 38272418 DOI: 10.1016/j.ijbiomac.2024.129705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Skin injuries and defects, as a common clinical issue, still cannot be perfectly repaired at present, particularly large-scale and infected skin defects. Therefore, in this work, a drug-loaded bilayer skin scaffold was developed for repairing full-thickness skin defects. Briefly, amoxicillin (AMX) was loaded on polycaprolactone (PCL) nanofiber via electrospinning to form the antibacterial nanofiber membrane (PCL-AMX) as the outer layer of scaffold to mimic epidermis. To maintain wound wettability and promote wound healing, external human epidermal growth factor (rhEGF) was loaded in sodium alginate-gelatin to form the hydrogel structure (SG-rhEGF) via 3D printing as inner layer of scaffold to mimic dermis. AMX and rhEGF were successfully loaded into the scaffold. The scaffold exhibited excellent physicochemical properties, with elongation at break and tensile modulus were 102.09 ± 6.74% and 206.83 ± 32.10 kPa, respectively; the outer layer was hydrophobic (WCA was 112.09 ± 4.67°), while the inner layer was hydrophilic (WCA was 48.87 ± 5.52°). Meanwhile, the scaffold showed excellent drug release and antibacterial characteristics. In vitro and in vivo studies indicated that the fabricated scaffold could enhance cell adhesion and proliferation, and promote skin wound healing, with favorable biocompatibility and great potential for skin regeneration and clinical application.
Collapse
Affiliation(s)
- Yongteng Song
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yahao Wang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| | - Jianghan Chen
- Department of Dermatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Guotai Yao
- Department of Dermatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
9
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
10
|
Saberian M, Safari Roudsari R, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon 2024; 10:e32040. [PMID: 38912439 PMCID: PMC11192993 DOI: 10.1016/j.heliyon.2024.e32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Wound management has always been a significant concern, particularly for men, and the search for effective wound dressings has led to the emergence of hydrogels as a promising solution. In recent years, hydrogels, with their unique properties, have gained considerable importance in wound management. Among the various types of hydrogels, those incorporating chitosan and alginate, two distinct chemical materials, have shown potential in accelerating wound healing. This review aims to discuss the desirable characteristics of an effective wound dressing, explore the alginate/chitosan-based hydrogels developed by different researchers, and analyze their effects on wound healing through in vitro and in vivo assessments. In vitro tests encompass a wide range of evaluations, including swelling capacity, degradation rate, porosity, Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis, moisture vapor transmission rate, release studies, mechanical properties, microscopic observation, antibacterial properties, compatibility assessment, cell adhesion investigation, blood clotting capability, cell migration analysis, water contact angle determination, and structural stability. Furthermore, in vivo assessments encompass the examination of wound closure rate, modulation of gene expression, as well as histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Raha Safari Roudsari
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Haghshenas
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rousta
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
11
|
Krishnamoorthy E, Purusothaman B, Subramanian B. Productizing Nano-Bioactive Glass-Based Bilayer Scaffolds: A Graft for Reconstruction of Mandibular and Femoral Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706308 DOI: 10.1021/acsami.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This investigation aimed to construct a bilayer scaffold integrating alginate and gelatin with nanobioactive glass (BG), recognized for their efficacy in tissue regeneration and drug delivery. Scaffolds, namely, alginate/gelatin (AG), alginate-/actonel gelatin (AGD), alginate actenol/gelatin-45S5 BG (4AGD), and alginate-actonel/gelatin-59S BG (5AGD), were assembled using a cost-effective freeze-drying method, followed by detailed structural investigation via powder X-ray diffraction as well as morphological characterization using field emission scanning electron microscopy (FESEM). FESEM revealed a honeycomb-like morphology with distinct pore sizes for nutrient, oxygen, and drug transport. The scaffolds evidently exhibited hemocompatibility, high porosity, good swelling capacity, and biodegradability. In vitro studies demonstrated sustained drug release, particularly for scaffolds containing actonel. In vivo tests showed that the bilayer scaffold promoted new bone formation, surpassing the control group in bone area increase. The interaction of the scaffold with collagen and released ions improved the osteoblastic function and bone volume fraction. The findings suggest that this bilayer scaffold could be beneficial for treating critical-sized bone defects, especially in the mandibular and femoral regions.
Collapse
Affiliation(s)
- Elakkiya Krishnamoorthy
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| | - Bargavi Purusothaman
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| |
Collapse
|
12
|
Eskandarinia A, Morowvat MH, Niknezhad SV, Baghbadorani MA, Michálek M, Chen S, Nemati MM, Negahdaripour M, Heidari R, Azadi A, Ghasemi Y. A photocrosslinkable and hemostatic bilayer wound dressing based on gelatin methacrylate hydrogel and polyvinyl alcohol foam for skin regeneration. Int J Biol Macromol 2024; 266:131231. [PMID: 38554918 DOI: 10.1016/j.ijbiomac.2024.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.
Collapse
Affiliation(s)
- Asghar Eskandarinia
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-54361, Iran
| | | | - Martin Michálek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Si Chen
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Mohammad Mahdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Sadeghi-Aghbash M, Rahimnejad M, Adeli H, Feizi F. Catecholamines polymerization crosslinking for alginate-based burn wound dressings developed with ciprofloxacin and zinc oxide interactions. Int J Biol Macromol 2024; 260:129400. [PMID: 38224799 DOI: 10.1016/j.ijbiomac.2024.129400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
There is an increasing demand for stable and durable wound dressings to treat burn injuries and infections. Bioactive electrospun nanofibrous mats with antibacterial properties are promising for wound dressing usage. Electrospinning of biopolymers for wound dressing applications needs post-spinning crosslinking to prevent mat dissolution in moist wound environments. Here, we prepared durable wound dressing by using the Dopamine (DA) polymerization crosslinking in Alginate (ALG)/Polyvinyl alcohol (PVA) nanofibrous mats, which are developed by Ciprofloxacin (CIP) and Zinc oxide (ZO). The nanofibrous mats were investigated by FESEM, FTIR, mechanical strength, water contact angle, degradation, degree of swelling, and WVTR tests. The analyses demonstrate the nanofibrous mats with uniform and unbranched fibers, with a hydrophilic nature, which was porous, durable, and stable. Also, it showed the CIP and ZO addition enhanced their durability by crosslinking reinforcement. In addition, the drug release and antibacterial assays demonstrated the pH-sensitive release with more drug release at higher pH (bacterial invasion) and impressive antibacterial activity (up to 99 %). In the burn wound model in rats, the ALG/PVA/DA/CIP/ZO nanofibrous mats displayed excellent wound healing ability in wound closure and tissue regeneration. Also, complete re-epithelization and remodeling and highest collagen synthesis in histological assessment.
Collapse
Affiliation(s)
- Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hassan Adeli
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
15
|
Aycan D, Gül İ, Yorulmaz V, Alemdar N. Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil. Int J Biol Macromol 2024; 255:128022. [PMID: 37972837 DOI: 10.1016/j.ijbiomac.2023.128022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In the current study, novel gelatin microspheres/methacrylated alginate hydrogel combined system (5-FU-GELms/Alg-MA) was developed for gastric targeted delivery of 5-fluorouracil as an anticancer agent. While water-in-oil emulsification method was used for the production of 5-FU-GELms, Alg-MA was synthesized through methacrylation reaction occurred by epoxide ring-opening mechanism. Then, 5-FU-GELms/Alg-MA hydrogel system was fabricated by the encapsulation of 5-FU-GELms into Alg-MA hydrogel network via UV-crosslinking. To evaluate applicability of fabricated 5-FU-GELms/Alg-MA as gastric targeted drug delivery vehicle, both swelling and in vitro drug release experiments were carried out at pH 1.2 medium resembling gastric fluid. Compared to drug release directly from 5-FU-GELms, 5-FU-GELms/Alg-MA hydrogel system showed more controlled and sustained drug release profile with lower amount of cumulative release starting from early stages, since hydrogel matrix created a barrier to the diffusion of 5-FU included in microspheres. Drug release kinetic results obtained by applying various kinetic models to release data showed that the mechanism of 5-FU release from 5-FU-GELms/Alg-MA hydrogel system is controlled by Fickian diffusion. All results revealed that 5-FU-GELms/Alg-MA hydrogel integrated system could be potentially utilized as gastric targeted drug carrier to enhance therapeutic efficacy and reduce systemic side effects in gastric cancer treatments for future studies.
Collapse
Affiliation(s)
- Didem Aycan
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - İnanç Gül
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Valeria Yorulmaz
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Neslihan Alemdar
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey.
| |
Collapse
|
16
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
17
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
18
|
Seifi S, Shamloo A, Tavoosi SN, Almasi-Jaf A, Shaygani H, Sayah MR. A novel multifunctional chitosan-gelatin/carboxymethyl cellulose-alginate bilayer hydrogel containing human placenta extract for accelerating full-thickness wound healing. Int J Biol Macromol 2023; 253:126929. [PMID: 37717877 DOI: 10.1016/j.ijbiomac.2023.126929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The replication of skin's dermal and epidermal morphology within a full-thickness wound using a bi-layer hydrogel to cater to their distinct needs is a compelling pursuit. Moreover, human placenta extract (HPE), containing a diverse array of bioactive agents, has proven to be effective in promoting the wound healing process and enhancing epidermal keratinocytes. This study presents a multifunctional bi-layer hydrogel incorporating HPE for accelerating full-thickness wound healing through sustained HPE release, inhibition of bacteria invasion, and promotion of cell proliferation. The upper layer of the scaffold, known as the dressing layer, is composed of carboxymethyl cellulose and sodium alginate, serving as a supportive layer for cell proliferation. The under layer, referred to as the regenerative layer, is composed of chitosan and gelatin, providing an extracellular matrix-like, porous, moist, and antibacterial environment for cell growth. The scaffold was optimized to replicate the morphology of the dermal and epidermal layers, with suitable fibroblast infiltration and a pore size of approximately 283μm. Furthermore, the degradation rate of the samples matched the wound healing rate and persisted throughout this period. The sustained HPE release rate, facilitated by the degradation rate, was optimized to reach ~98% after 28 days, covering the entire healing period. The samples demonstrated robust antibacterial capabilities, with bacterial inhibition zone diameters of and 2.63±0.12cm for S. aureus and E. coli, respectively. The biocompatibility of the samples remained at approximately 68.33±4.5% after 21 days of fibroblast cell culture. The in vivo experiment indicated that the HPE@Bilayer hydrogel promotes the formation of new blood vessels and fibroblasts during the early stages of healing, leading to the appropriate formation of granulation tissue and a wound contraction rate of (79.31±3.1)%. Additionally, it resulted in the formation of a thick epidermal layer (keratinization) that effectively covered all the impaired areas, achieving a wound contraction rate of 95.83±6.3% at the late stage of wound healing. Furthermore, immunohistochemistry staining for CD31 and TGF-β revealed that the HPE@Bilayer group had 22 blood vessels/field and 34%-66% immunoactive cells, respectively, after 14 days of healing. However, by day 21, angiogenesis and TGF-β expression had declined, demonstrating that the wounds had been successfully treated with minimal scarring.
Collapse
Affiliation(s)
- Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Sayed Navid Tavoosi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Reza Sayah
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| |
Collapse
|
19
|
Fu X, Chen Y, Hu G, Lv J, Liu J, Ma M, Fu X. A novel antibacterial hydrogel based on thiolated ovalbumin/gelatin with silver ions to promote wound healing in mice. Int J Biol Macromol 2023; 253:127116. [PMID: 37774816 DOI: 10.1016/j.ijbiomac.2023.127116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Hydrogels could be used as wound dressings, but most protein-based hydrogels lack anti-bacterial effects. Here, we successfully prepared a silver ion cross-linked thiolated protein hydrogel (thiolated Ovalbumin and Gelatin, O3G7). The wound photographs showed that the healing rate (96.23 %) of hydrogel-treated mice was higher than the control group. Meanwhile, the hydrogel increased the granulation tissue's total protein content. Furthermore, it significantly increased the collagen content, consistent with the results of Masson's trichrome (MT) staining and immunohistochemical analysis of type I collagen (ColI). The results of hematoxylin and eosin (H&E) staining showed the growth and proliferation of inflammatory cells, granulation tissue, fibroblasts, blood vessels and hair follicles in acute wounds. O3G7 hydrogel had fewer inflammatory cells and more neovascularization, and hair follicle tissue and intact epidermis could be observed. The results of immunofluorescence and immunohistochemistry showed that the O3G7 group reduced the expression of tumor necrosis factor (TNF)-α (56.87 % of the control group) and upregulated the expression of transforming growth factor (TGF)-β (1.29 times of the control group). These results suggest that O3G7 hydrogel significantly affects the healing of acute wounds. This study demonstrates that hydrogels prepared from food-derived proteins will be promising and bio-safe candidates in bioengineering.
Collapse
Affiliation(s)
- Xiaowen Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yue Chen
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gan Hu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiran Lv
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
20
|
Yu H, Li Y, Pan Y, Wang H, Wang W, Ren X, Yuan H, Lv Z, Zuo Y, Liu Z, Lin W, Yao Q. Multifunctional porous poly (L-lactic acid) nanofiber membranes with enhanced anti-inflammation, angiogenesis and antibacterial properties for diabetic wound healing. J Nanobiotechnology 2023; 21:110. [PMID: 36973737 PMCID: PMC10041712 DOI: 10.1186/s12951-023-01847-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
With increased diabetes incidence, diabetic wound healing is one of the most common diabetes complications and is characterized by easy infection, chronic inflammation, and reduced vascularization. To address these issues, biomaterials with multifunctional antibacterial, immunomodulatory, and angiogenic properties must be developed to improve overall diabetic wound healing for patients. In our study, we prepared porous poly (L-lactic acid) (PLA) nanofiber membranes using electrospinning and solvent evaporation methods. Then, sulfated chitosan (SCS) combined with polydopamine-gentamicin (PDA-GS) was stepwise modified onto porous PLA nanofiber membrane surfaces. Controlled GS release was facilitated via dopamine self-polymerization to prevent early stage infection. PDA was also applied to PLA nanofiber membranes to suppress inflammation. In vitro cell tests results showed that PLA/SCS/PDA-GS nanofiber membranes immuomodulated macrophage toward the M2 phenotype and increased endogenous vascular endothelial growth factor secretion to induce vascularization. Moreover, SCS-contained PLA nanofiber membranes also showed good potential in enhancing macrophage trans-differentiation to fibroblasts, thereby improving wound healing processes. Furthermore, our in vitro antibacterial studies against Staphylococcus aureus indicated the effective antibacterial properties of the PLA/SCS/PDA-GS nanofiber membranes. In summary, our novel porous PLA/SCS/PDA-GS nanofiber membranes possessing enhanced antibacterial, anti-inflammatory, and angiogenic properties demonstrate promising potential in diabetic wound healing processes.
Collapse
Affiliation(s)
- Hao Yu
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yijia Li
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yining Pan
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Hongning Wang
- grid.268099.c0000 0001 0348 3990Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027 China
| | - Wei Wang
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Xiaobin Ren
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Hang Yuan
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Ziru Lv
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yijia Zuo
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Zhirong Liu
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Wei Lin
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Qingqing Yao
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| |
Collapse
|
21
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Ghafari R, Jonoobi M, Naijian F, Ashori A, Mekonnen TH, Taheri AR. Fabrication and characterization of bilayer scaffolds - nanocellulosic cryogels - for skin tissue engineering by co-culturing of fibroblasts and keratinocytes. Int J Biol Macromol 2022; 223:100-107. [PMID: 36347362 DOI: 10.1016/j.ijbiomac.2022.10.281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
This study focuses on developing a microarchitectural bilayer structure for stimulating the two top layers of skin tissue (epidermis and dermis) fabricated using a one-step freeze-drying method. Cellulose nanofibers (CNFs) and poly (vinyl) alcohol (PVA) were used as a biocompatible scaffolding material, and the composition was designed in such a way that it provides physical and biological property attributes. In this work, scaffolding materials with integrated layer structures and well interconnected and open pore structures were obtained. This bilayer structure had porosity with a pore size of 19.72 μm and 90.71 μm for the simulation of the epidermis and dermis, respectively. The production and expression of laminin, collagen IV, and keratin 10 proteins in the bilayer cryogel scaffolds obtained from the immunofluorescence study were 49.7 %, 63.8 %, and 49.3 %, respectively. The extracellular matrix (ECM) was produced in each scaffold layer. The observations confirmed that the porosity and pore size of both N1 and N2 layers were appropriate for the fibroblast and keratinocyte cells, respectively. H&E stained cross-sections of bilayer cryogel scaffolds illustrated epidermal and dermal layers produced by co-culturing keratinocytes and fibroblasts. Based on the results, the bilayer CNF/PVA scaffold can be used in skin tissue engineering applications. However, more experiments and in vivo evaluations are needed to express this conclusion more accurately.
Collapse
Affiliation(s)
- Robab Ghafari
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mehdi Jonoobi
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Fatemeh Naijian
- Department of Biorefinery Engineering, Faculty of New Technologies and Energy Engineering, Shahid Beheshti University, Zirab, Mazandaran, Iran
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ahmad Reza Taheri
- Department of Plastic Surgery, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Echeverria Molina MI, Chen CA, Martinez J, Tran P, Komvopoulos K. Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 16:136. [PMID: 36614475 PMCID: PMC9821731 DOI: 10.3390/ma16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
After decades of research, fully functional skin regeneration is still a challenge. Skin is a multilayered complex organ exhibiting a cascading healing process affected by various mechanisms. Specifically, nutrients, oxygen, and biochemical signals can lead to specific cell behavior, ultimately conducive to the formation of high-quality tissue. This biomolecular exchange can be tuned through scaffold engineering, one of the leading fields in skin substitutes and equivalents. The principal objective of this investigation was the design, fabrication, and evaluation of a new class of three-dimensional fibrous scaffolds consisting of poly(ε-caprolactone) (PCL)/calcium alginate (CA), with the goal to induce keratinocyte differentiation through the action of calcium leaching. Scaffolds fabricated by electrospinning using a PCL/sodium alginate solution were treated by immersion in a calcium chloride solution to replace alginate-linked sodium ions by calcium ions. This treatment not only provided ion replacement, but also induced fiber crosslinking. The scaffold morphology was examined by scanning electron microscopy and systematically assessed by measurements of the pore size and the diameter, alignment, and crosslinking of the fibers. The hydrophilicity of the scaffolds was quantified by contact angle measurements and was correlated to the augmentation of cell attachment in the presence of CA. The in vitro performance of the scaffolds was investigated by seeding and staining fibroblasts and keratinocytes and using differentiation markers to detect the evolution of basal, spinous, and granular keratinocytes. The results of this study illuminate the potential of the PCL/CA scaffolds for tissue engineering and suggest that calcium leaching out from the scaffolds might have contributed to the development of a desirable biological environment for the attachment, proliferation, and differentiation of the main skin cells (i.e., fibroblasts and keratinocytes).
Collapse
|
25
|
Amjadi F, Beheshti R, Nasimi FS, Hassani A, Shirazi R, Tamadon A, Rahbarghazi R, Mahdipour M. Decellularized bovine ovarian niche restored the function of cumulus and endothelial cells. BMC Res Notes 2022; 15:346. [DOI: 10.1186/s13104-022-06233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Objective:
Recently, the decellularization technique is introduced as one of the tissue engineering procedures for the treatment of various deficiencies. Here, we aimed to assess the dynamic activity of CCs and HUVECs within decellularized bovine ovarian tissue transplanted subcutaneously in rats. Ovarian tissue was decellularized using a cocktail consisting of different chemicals, and the efficiency of decellularization was assessed using hematoxylin-eosin and DAPI staining. The cell survival was evaluated using an LDH leakage assay. Thereafter, decellularized samples were recellularized using HUVECs and CCs, encapsulated inside alginate (1.2%)-gelatin, (1%) hydrogel, and transplanted subcutaneously to rats. The existence of CD31- and estrogen-positive cells was assessed using immunohistochemistry staining.
Results:
Bright-field imaging and DAPI staining revealed the lack of nuclei with naive matrix structure in ovarian tissue subjected to decellularization protocol. SEM imaging revealed a normal matrix in decellularized ovaries. LDH assay showed a lack of cytotoxicity for CCs after 7-days compared to the control group. Immunohistochemistry staining showed both CD31- and estrogen-positive cells in CCs + HUVECs compared to the CCs group. CD31 cells appeared with flattened morphology aligned with matrix fibers. The existence of estrogen and CD31 positive cells showed the efficiency of decellularized ovarian tissue to restore cellular function and activity.
Collapse
|
26
|
Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z, Yi M, Xie N, Shen Y, Ren X, Wang J, Wang J. A Nanozyme-Immobilized Hydrogel with Endogenous ROS-Scavenging and Oxygen Generation Abilities for Significantly Promoting Oxidative Diabetic Wound Healing. Adv Healthc Mater 2022; 11:e2201524. [PMID: 36100580 DOI: 10.1002/adhm.202201524] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Indexed: 01/28/2023]
Abstract
Non-healing wound is a common complication of diabetic patients associated with high morbidity and mortality. Engineered therapeutic hydrogels have enviable advantages in tissue regeneration, however, they are suboptimal for the healing of diabetic wounds characterized by reactive oxygen species (ROS) accumulation and chronic hypoxia. Here, a unique biological metabolism-inspired hydrogel, for ameliorating this hostile diabetic microenvironment, is presented. Consisting of natural polymers (hydrazide modified hyaluronic acid and aldehyde modified hyaluronic acid) and a metal-organic frameworks derived catalase-mimic nanozyme (ε-polylysine coated mesoporous manganese cobalt oxide), the engineered nanozyme-reinforced hydrogels can not only capture the endogenous elevated ROS in diabetic wounds, but also synergistically produce oxygen through the ROS-driven oxygen production ability. These fascinating properties of hydrogels protect skin cells (e.g., keratinocytes, fibroblasts, and vascular endothelial cells) from ROS and hypoxia-mediated death and proliferation inhibition. Diabetic wounds treated with the nanozyme-reinforced hydrogels highlight the potential of inducing the macrophages polarization from pro-inflammatory phenotype (M1) to anti-inflammatory subtype (M2). The hydrogel dressings demonstrate a prominently accelerated healing rate as shown by alleviating the excessive inflammatory, inducing efficiently proliferation, re-epithelialization, collagen deposition, and neovascularization. This work provides an effective strategy based on nanozyme-reinforced hydrogel as a ROS-driven oxygenerator for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Yue Zhao
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen, 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hanwei Huang
- Chen Xinhai Hospital, No. 18 Zhuyuan Road, Xiaolan, Zhongshan, 528415, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Mingjie Yi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Neng Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiangzhong Ren
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Orthopaedic Research Institute of Jilin Province, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
27
|
González-Torres M, Vargas-Muñoz S, Leyva-Gómez G, Méndez-Padilla MG, Cortés H, Nuñez-Rojas E, González-Mendoza O, Pérez-Díaz MA, Ruvalcaba-Paredes EK, Lima E, Brena AM, Rodríguez-Talavera R, Pineda C. Discovering the effect of solvents on poly(2-aminoethyl methacrylate) grafting onto chitosan for an in vitro skin model. Carbohydr Polym 2022; 295:119864. [DOI: 10.1016/j.carbpol.2022.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
|
28
|
Ran L, Peng SY, Wang W, Wu Q, Li YC, Wang RP. In vitro and in vivo Evaluation of the Bioactive Nanofibers-Encapsulated Benzalkonium Bromide for Accelerating Wound Repair with MRSA Skin Infection. Int J Nanomedicine 2022; 17:4419-4432. [PMID: 36172005 PMCID: PMC9510697 DOI: 10.2147/ijn.s380786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Developing the ideal drug or dressing is a serious challenge to controlling the occurrence of antibacterial infection during wound healing. Thus, it is important to prepare novel nanofibers for a wound dressing that can control bacterial infections. In our study, the novel self-assembled nanofibers of benzalkonium bromide with bioactive peptide materials of IKVAV and RGD were designed and fabricated. Methods Different drug concentration effects of encapsulation efficacy, swelling ratio and strength were determined. Its release profile in simulated wound fluid and its cytotoxicity were studied in vitro. Importantly, the antibacterial efficacy, inhibition of biofilm formation effect and wound healing against MRSA infections in vitro and in vivo were performed after observing the tissue toxicity in vivo. Results It was found that the optimized drug load (0.8%) was affected by the encapsulation efficacy, swelling ratio, and strength. In addition, the novel nanofibers with average diameter (222.0 nm) and stabile zeta potential (−11.2 mV) have good morphology and characteristics. It has a delayed released profile in the simulated wound fluid and good biocompatibility with L929 cells and most tissues. Importantly, the nanofibers were shown to improve antibacterial efficacy, inhibit biofilm formation, and lead to accelerated wound healing following infection with methicillin-resistant Staphylococcus aureus. Conclusion These data suggest that novel nanofibers could effectively shorten the wound-healing time by inhibiting biofilm formation, which make it promising candidates for treatment of MRSA-induced wound infections. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/wBXjQQOPzyc
Collapse
Affiliation(s)
- Lei Ran
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Shi-Ya Peng
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Wei Wang
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Qian Wu
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Yuan-Chao Li
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Ru-Peng Wang
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| |
Collapse
|
29
|
Zhu JQ, Wu H, Li ZL, Xu XF, Xing H, Wang MD, Jia HD, Liang L, Li C, Sun LY, Wang YG, Shen F, Huang DS, Yang T. Responsive Hydrogels Based on Triggered Click Reactions for Liver Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201651. [PMID: 35583434 DOI: 10.1002/adma.202201651] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Globally, liver cancer, which is one of the major cancers worldwide, has attracted the growing attention of technological researchers for its high mortality and limited treatment options. Hydrogels are soft 3D network materials containing a large number of hydrophilic monomers. By adding moieties such as nitrobenzyl groups to the network structure of a cross-linked nanocomposite hydrogel, the click reaction improves drug-release efficiency in vivo, which improves the survival rate and prolongs the survival time of liver cancer patients. The application of a nanocomposite hydrogel drug delivery system can not only enrich the drug concentration at the tumor site for a long time but also effectively prevents the distant metastasis of residual tumor cells. At present, a large number of researches have been working toward the construction of responsive nanocomposite hydrogel drug delivery systems, but there are few comprehensive articles to systematically summarize these discoveries. Here, this systematic review summarizes the synthesis methods and related applications of nanocomposite responsive hydrogels with actions to external or internal physiological stimuli. With different physical or chemical stimuli, the structural unit rearrangement and the controlled release of drugs can be used for responsive drug delivery in different states.
Collapse
Affiliation(s)
- Jia-Qi Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Han Wu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Zhen-Li Li
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hang-Dong Jia
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lei Liang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Li-Yang Sun
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yu-Guang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| |
Collapse
|
30
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Zhang J, Hu L, Zhang Q, Guo C, Wu C, Shi Y, Shu R, Tan L. Polyhexamethylene guanidine hydrochloride modified sodium alginate nonwoven with potent antibacterial and hemostatic properties for infected full-thickness wound healing. Int J Biol Macromol 2022; 209:2142-2150. [PMID: 35500777 DOI: 10.1016/j.ijbiomac.2022.04.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
The development of multifunctional wound dressings has always been considered as a promising strategy to promote blood coagulation, inhibit bacterial infection, and accelerate wound healing. Herein, an antibacterial and hemostatic dressing (SA-PHMG) was developed based on sodium alginate (SA) nonwoven and polyhexamethylene guanidine hydrochloride (PHMG) through a completely green industrial route, including dipping, padding, and drying. According to studies, SA-PHMG dressings exhibited excellent liquid absorption capacity and water vapor permeability. Moreover, bactericidal assays have demonstrated that SA-PHMG dressings have ideal antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and mixed bacteria, maintaining potent antibacterial activity even after 10 cycles of antibacterial trials or 50 times of washing or soaping. The in vitro evaluation of the hemostatic effect indicated that the SA-PHMG could significantly promote blood clotting by activating platelets, and in vitro and in vivo hemolysis, cytotoxicity and skin irritation studies demonstrated the ideal biocompatibility of the dressings. In addition, better wound closure and tissue regeneration were recorded using SA-PHMG nonwoven as the dressing based on an infected full-thickness wound model. In conclusion, this antibacterial, hemostatic, biocompatible, and environmentally friendly SA-PHMG nonwoven exhibit the potential for infected wound healing.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Liwei Hu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chuan Guo
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Chenyi Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yidong Shi
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Rui Shu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
32
|
Zheng F, Yang X, Li J, Tian Z, Xiao B, Yi S, Duan L. Coordination with zirconium: A facile approach to improve the mechanical properties and thermostability of gelatin hydrogel. Int J Biol Macromol 2022; 205:595-603. [PMID: 35217081 DOI: 10.1016/j.ijbiomac.2022.02.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
The poor mechanical property and thermostability restricted applications of gelatin hydrogel. Herein, a facile and inexpensive approach of immerging cooling induced gelatin hydrogels into Zr(SO4)2 dilute solution was applied to overcome these shortages. After this treatment, the micropores in hydrogel decreased to tens of microns while the water content slightly decreased. XPS results revealed that the coordination bonds formed between amino or carboxyl groups of gelatins and Zr4+. After immerging in 0.06 M Zr4+ solution, mechanical tests showed that the elastic modulus, compressive modulus and compressive strength of hydrogel were about 400, 1192 and 476 kPa, respectively, which were approximate 100, 11 and 5 times larger than those of pure gelatin. The DSC data indicated that the thermoreversible temperature of triple helix structure in gelatin was improved from about 30 °C to 55 °C. More importantly, the rheological temperature sweep test revealed that hydrogels with 0.06 M Zr4+ treatment can maintain the hydrogel state without melting even at 80 °C. CCK-8 tests and Calcein-AM/PI double-stain experiments demonstrated Zr4+ coordination was non-cytotoxic. These promising data indicated this nontoxic method was efficient and had potential to fabricate gelatin related materials for further application.
Collapse
Affiliation(s)
- Fan Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
33
|
Campa-Siqueiros PI, Madera-Santana TJ, Ayala-Zavala JF, López-Cervantes J, Castillo-Ortega MM, Herrera-Franco PJ, Quintana-Owen P. Co-electrospun nanofibers of gelatin and chitosan–polyvinyl alcohol–eugenol for wound dressing applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Begines B, Arevalo C, Romero C, Hadzhieva Z, Boccaccini AR, Torres Y. Fabrication and Characterization of Bioactive Gelatin-Alginate-Bioactive Glass Composite Coatings on Porous Titanium Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15008-15020. [PMID: 35316017 PMCID: PMC8990524 DOI: 10.1021/acsami.2c01241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 05/10/2023]
Abstract
In this research work, the fabrication of biphasic composite implants has been investigated. Porous, commercially available pure Ti (50 vol % porosity and pore distributions of 100-200, 250-355, and 355-500 μm) has been used as a cortical bone replacement, while different composites based on a polymer blend (gelatin and alginate) and bioactive glass (BG) 45S5 have been applied as a soft layer for cartilage tissues. The microstructure, degradation rates, biofunctionality, and wear behavior of the different composites were analyzed to find the best possible coating. Experiments demonstrated the best micromechanical balance for the substrate containing 200-355 μm size range distribution. In addition, although the coating prepared from alginate presented a lower mass loss, the composite containing 50% alginate and 50% gelatin showed a higher elastic recovery, which entails that this type of coating could replicate the functions of the soft tissue in areas of the joints. Therefore, results revealed that the combinations of porous commercially pure Ti and composites prepared from alginate/gelatin/45S5 BG are candidates for the fabrication of biphasic implants not only for the treatment of osteochondral defects but also potentially for any other diseases affecting simultaneously hard and soft tissues.
Collapse
Affiliation(s)
- Belen Begines
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/ Profesor García González
2, Seville 41012, Spain
| | - Cristina Arevalo
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| | - Carlos Romero
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
- Department
of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. de la Universidad 30, Leganés, Madrid 28911, Spain
| | - Zoya Hadzhieva
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Yadir Torres
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, c/ Virgen de África 7, Seville 41011, Spain
| |
Collapse
|
35
|
Dębski T, Wysocki J, Siennicka K, Jaroszewicz J, Szlązak K, Święszkowski W, Pojda Z. Modified Histopathological Protocol for Poly-ɛ-Caprolactone Scaffolds Preserving Their Trabecular, Honeycomb-like Structure. MATERIALS 2022; 15:ma15051732. [PMID: 35268968 PMCID: PMC8911251 DOI: 10.3390/ma15051732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Poly-ɛ-caprolactone (PCL) is now widely studied in relation to the engineering of bone, cartilage, tendons, and other tissues. Standard histological protocols can destroy the carefully created trabecular and honeycomb-like architecture of PCL scaffolds, and could lead to scaffold fibers swelling, resulting in the displacement or compression of tissues inside the scaffold. The aim of this study was to modify a standard histopathological protocol for PCL scaffold preparation and evaluate it on porous cylindrical PCL scaffolds in a rat model. In 16 inbred Wag rats, 2 PCL scaffolds were implanted subcutaneously to both inguinal areas. Two months after implantation, harvested scaffolds were first subjected to μCT imaging, and then to histopathological analysis with standard (left inguinal area) and modified histopathological protocols (right inguinal area). To standardize the results, soft tissue percentages (STPs) were calculated on scaffold cross-sections obtained from both histopathological protocols and compared with corresponding µCT cross-sections. The modified protocol enabled the assessment of almost 10× more soft tissues on the scaffold cross-section than the standard procedure. Moreover, STP was only 1.5% lower than in the corresponding µCT cross-sections assessed before the histopathological procedure. The presented modification of the histopathological protocol is cheap, reproducible, and allows for a comprehensive evaluation of PCL scaffolds while maintaining their trabecular, honeycomb-like structure on cross-sections.
Collapse
Affiliation(s)
- Tomasz Dębski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland; (J.W.); (K.S.); (Z.P.)
- Correspondence:
| | - Juliusz Wysocki
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland; (J.W.); (K.S.); (Z.P.)
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland; (J.W.); (K.S.); (Z.P.)
| | - Jakub Jaroszewicz
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (J.J.); (K.S.); (W.Ś.)
| | - Karol Szlązak
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (J.J.); (K.S.); (W.Ś.)
| | - Wojciech Święszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (J.J.); (K.S.); (W.Ś.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wilhelma Konrada Roentgena 5, 02-781 Warsaw, Poland; (J.W.); (K.S.); (Z.P.)
| |
Collapse
|