1
|
Figué A, Gosset M, Violleau F. AF4-UHPLC: Two-dimensional separation of macromolecules in four white wines from South-Western France. J Chromatogr A 2024; 1738:465456. [PMID: 39488122 DOI: 10.1016/j.chroma.2024.465456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Proteins in wines contribute to "protein haze," which, while not affecting health or taste, can detract from the visual appeal of wines to consumers. To mitigate this issue, winemakers commonly use fining agents such as bentonite, despite the high costs involved. To overcome these challenges, numerous studies employ various analytical methods to better understand the behaviour of proteins. A novel technique which separates compounds by size, Asymmetrical Flow-Field Flow Fractionation (AF4), allows for studying proteins without denaturing them. Given that most proteins share similar sizes, identification remains challenging. The aim of this work was initially to develop a new system enabling simultaneous analysis of the macromolecular profile of wines (proteins, mannoproteins) using AF4 and real-time protein nature analysis (hydrophobicity properties) using Ultra-High Performance Liquid Chromatography (UHPLC). By injecting two standards of different sizes and chemical nature, thaumatin protein and mannoproteins, the system was validated. The subsequent application of this system to Southwestern wines revealed distinct profiles across monovarietal white wines from four grape varieties. While the Colombard (COL) and Gros manseng (GM) varieties showed similar protein compositions with varying concentrations, the Len de l'el (LL) variety had only two types of protein and no protein was detected in the Mauzac (MZ) variety. Despite these variations, all varieties contained mannoproteins. This system shows promise for studying wine protein composition and could potentially find applications in other matrices.
Collapse
Affiliation(s)
- Auriane Figué
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 75 Voie du Toec, Toulouse 31076, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 4 Allée Emile Monso, Toulouse 31000, France; Département sciences de l'agroalimentaire et de la nutrition, Université de Toulouse, INP-PURPAN, 75 Voie du Toec, Toulouse 31076, France
| | - Marianne Gosset
- Département sciences de l'agroalimentaire et de la nutrition, Université de Toulouse, INP-PURPAN, 75 Voie du Toec, Toulouse 31076, France.
| | - Frédéric Violleau
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 75 Voie du Toec, Toulouse 31076, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 4 Allée Emile Monso, Toulouse 31000, France
| |
Collapse
|
2
|
Cao H, Wen S, Deng X, Sun M, Zhang P. Preparation and characterization of insoluble β-glucan from waste beer yeast. Int J Biol Macromol 2024; 282:136657. [PMID: 39423974 DOI: 10.1016/j.ijbiomac.2024.136657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The management of brewery waste, particularly waste brewer's yeast, has posed a significant environmental and economic challenge. This study proposed an approach to valorize waste brewer's yeast by extracting β-glucan. The key phases of the research included yeast autolysis, alkaline treatment and optimization of the β-glucan purification conditions. The findings revealed that a 0.7 % NaOH concentration at 80 °C for 2.6 h was the most effective for impurity removal. In the comparative analysis, it was confirmed that extraction at 80 % DMSO concentration with a 30:1 solid-liquid ratio at 80 °C for 30 min was the optimal condition for obtaining high-purity β-glucan. The process yielded a β-glucan high purity of 95.84 ± 1.15 % and a yield of 5.56 ± 0.34 % based on the wet weight after centrifugation. The structure was analyzed using TLC, FTIR and NMR. The extracts are polysaccharides composed of glucose monomers linked by β-glycosidic bonds. In addition, It has demonstrated significant anti-inflammatory properties in vitro and can be developed as a functional food. This study provides a feasible and efficient solution for the sustainable utilization of waste brewer's yeast, contributing to environmental sustainability and offering economic benefits for the brewing industry.
Collapse
Affiliation(s)
- Huaqiang Cao
- School of Life Sciences, Henan University, Henan Province, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Simiao Wen
- School of Life Sciences, Henan University, Henan Province, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Xiaoliu Deng
- School of Life Sciences, Henan University, Henan Province, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Mengqi Sun
- School of Life Sciences, Henan University, Henan Province, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Pengpai Zhang
- School of Life Sciences, Henan University, Henan Province, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| |
Collapse
|
3
|
Jofre FM, Queiroz SDS, Sanchez DA, Arruda PV, Santos JCD, Felipe MDGDA. Biotechnological potential of yeast cell wall: An overview. Biotechnol Prog 2024; 40:e3491. [PMID: 38934212 DOI: 10.1002/btpr.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.
Collapse
Affiliation(s)
- Fanny Machado Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Sarah de Souza Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Diana Alva Sanchez
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Priscila Vaz Arruda
- Department of Bioprocess and Biotechnology Engineering, Federal University of Technology-Paraná (UTFPR), Toledo, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | |
Collapse
|
4
|
Gao B, Li S, Lei X, Huang X, Rao C, Li J, Qin Y, Ye D, Liu Y. Extraction and structural analysis of mannoproteins from different species of yeast: Bitter suppression and the potential mechanisms for wine. Int J Biol Macromol 2024; 279:135675. [PMID: 39349326 DOI: 10.1016/j.ijbiomac.2024.135675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
To rich the research for mannoproteins (MPs) suppressive effect on the bitterness of wine, this study distinguished bitterness into initial bitterness and bitter aftertaste. By utilizing the thermal alkali extraction method, MPs were extracted from three different yeast species: Saccharomyces cerevisiae (CECA), Lachancea thermotolerans (A38), and Torulaspora delbrueckii (2082). Their basic structures, addition concentrations, and correlation with bitter suppression ability were characterized. CECA exhibited stronger initial bitterness suppression ability, may attributed to its more branches and lack of a triple-helix structure. 2082 showed greater bitter aftertaste suppression and might due to smaller particle aggregation, fewer branches, and triple-helix structure. Additionally, it was noteworthy that due to the unique structure of 2082, it may bound more monomer and oligomeric proanthocyanidins (MOPC) on MPs surface, reducing its initial bitterness suppression ability. Concerning concentration, the increase in polysaccharide chain polymerization hindered further interaction with MOPC, leading to a decrease in its initial bitterness suppression ability. Bitter aftertaste exhibited different behaviors. As the concentration of CECA increased, there was an increase in oral adhesion instead.
Collapse
Affiliation(s)
- Binghong Gao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Siqi Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xingmeng Lei
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaochuan Huang
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Chuanyan Rao
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiemin Li
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Burken O, Sommer S. Evaluation of protein-polysaccharide interactions through ζ-potential and particle size measurements to assess their functionality in wine. J Food Sci 2024; 89:6413-6424. [PMID: 39269268 DOI: 10.1111/1750-3841.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Protein-polysaccharide-tannin interactions are important in every aspect of red wine production from physical stability to color, astringency, and body. For this model study, bovine serum albumin (BSA) was selected as the protein, while carboxymethyl cellulose (CMC), mannoproteins, and pectin were the model polysaccharides. Each protein-polysaccharide combination was analyzed for zeta (ζ) potential and particle size at neutral pH and within the wine-like solution. Mixtures were assessed regarding their protective, affinitive, and aggregative behaviors. Based on their individual ζ-potentials, pectin and mannoprotein were most stable at lower concentrations. At higher concentrations, they reduced the suspension's stability and increased the aggregate sizes. CMC consistently increased the stability of any solution under neutral pH conditions. However, with increasing concentrations, these large aggregates are expected to precipitate. Fruit pectin (FP) and BSA interactions seemed to be the main factors in the formation of visible precipitates at neutral pH. FP and the mannoprotein decreased stability enough to cause precipitation without haze formation. The mannoprotein decreased particle sizes, in both the suspension and precipitation, which may indicate greater selectivity toward proteins. FP also decreased the suspended particle sizes under wine conditions. These findings demonstrate the use of ζ-potential and particle size values to characterize macromolecular interactions in model systems and can also be used to indicate effective fining agents. PRACTICAL APPLICATION: This work demonstrates the capabilities of ζ-potential analysis paired with size particle measurements to predict and characterize the interactions between macromolecules in complex systems. The interactions between model wine macromolecules can be evaluated with this technology at a level that cannot be reached with any other analytical technique.
Collapse
Affiliation(s)
- Olivia Burken
- Grape and Wine Institute, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Stephan Sommer
- Grape and Wine Institute, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
6
|
Dong H, Guo Z, Ma Y, Lin J, Zhai H, Ren D, Li S, Yi L. Organoleptic modulation functions and physiochemical characteristics of mannoproteins: Possible correlations and precise applications in modulating color evolution and orthonasal perception of wines. Food Res Int 2024; 192:114803. [PMID: 39147502 DOI: 10.1016/j.foodres.2024.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Mannoproteins have traditionally been recognized as effective wine organoleptic modulators, however, ambiguous understanding of the relationship between their organoleptic functions and physiochemical characteristics often lead to inappropriate application in winemaking. To reveal the possible role the physiochemical characteristics of mannoproteins play in modulating wine color and aroma properties, three water-soluble mannoproteins (MP1, MP2, MP3) with different physiochemical characteristics have been prepared, and accelerated red wine aging, malvidin pigments formation experiments, accelerated aroma release experiments have been designed to observe their organoleptic modulating functions in this research. Results suggest that the phenolic/chromatic stability of red wines could be enhanced by MP3, probably due to its low steric hindrance potential, high reactivity, and good hydro-alcoholic stability conferred by its high Mannan/Glucan ratio (8.68), abundant hydrophobic/hydrophilic amino acids (65.29 % of total protein), and low/medium molecular weight level (30.71-57.77 kDa), respectively, which protected the phenolic compounds and promoted the formation of pyranoanthocyanins. Mannoproteins could modulate the volatility of aroma compounds by expelling or retention effects, which depended on the duration of mannoprotein application (the expelling effect was firstly observed possibly because of the significant adsorption of free H2O by MPs) and the types of mannoproteins. MP1 and MP2 were prone to retain and expel aroma compounds, respectively, probably due to their medium/high molecular weight levels (60.48-135.39 kDa) that conferred abundant interacting sites, and the high proportion of hydrophobic and hydrophilic components in MP1 (97.71 % polysaccharides of total mannoprotein, 34.58 % hydrophobic amino acids of total protein) and MP2 (97.96 % polysaccharides of total mannoprotein, 28.36 % hydrophobic amino acids of total protein) guaranteed a relatively higher interacting frequency with aroma compounds and free H2O molecules, respectively.
Collapse
Affiliation(s)
- Hanyue Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengbo Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanhong Ma
- Kunming Institute for Food and Drug Control, Kunming 650032, China
| | - Junxia Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongyue Zhai
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
He Q, Liang S, Luo J, Yin X, Sun J, Bai W. Stabilization effect and interaction mechanism of mannoprotein on anthocyanins in mulberry juice. Int J Biol Macromol 2024; 273:133133. [PMID: 38876233 DOI: 10.1016/j.ijbiomac.2024.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.
Collapse
Affiliation(s)
- Qianqian He
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Shuyan Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jielin Luo
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xiang Yin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Kong C, Zhang Q, Wang Y, Huang J, Li A, Tao Y. Decoding Polysaccharides from Two Pichia Yeasts and Their Molecular Interaction with Wine Fruity Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12707-12718. [PMID: 38757388 DOI: 10.1021/acs.jafc.4c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study extensively characterized yeast polysaccharides (YPs) from Pichia fermentans (PF) and Pichia kluyveri (PK), with a specific focus on their structural attributes and their interaction with wine fruity esters in a model wine system. By finely tuning enzymatic reactions based on temperature, pH, and enzyme dosage, an optimal YP yield of 77.37% was achieved, with a specific mass ratio of cellulase, pectinase, and protease set at 3:5:2. There were four YP fractions (YPPF-W, YPPF-N, YPPK-W, and YPPK-N) isolated from the two yeasts. YPPF-N and YPPK-N were identified as glucans based on monosaccharide analysis and Fourier-transform infrared spectroscopy analysis. "Specific degradation-methylation-nuclear magnetic" elucidated YPPF-W's backbone structure as 1,3-linked α-l-Man and 1,6-linked α-d-Glc residues, while YPPK-W displayed a backbone structure of 1,3-linked α-Man residues, indicative of a mannoprotein nature. Isothermal titration calorimetry revealed spontaneous interactions between YPPK-W/YPPF-W and fruity esters across temperatures (25-45 °C), with the strongest interaction observed at 30 °C. However, distinct esters exhibited varying interactions with YPPK-W and YPPF-W, attributed to differences in molecular weights and hydrophobic characteristics. While shedding light on these intricate interactions, further experimental data is essential for a comprehensive understanding of yeast polysaccharides' or mannoproteins' impact on fruity esters. This research significantly contributes to advancing our knowledge of yeast polysaccharides' role in shaping the nuanced sensory attributes of wine.
Collapse
Affiliation(s)
- Cailin Kong
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qi Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yiqing Wang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Jie Huang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Aihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-viniculture, Yangling 712100, China
| |
Collapse
|
9
|
Lee HJ, Park BR, Chewaka LS. A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer's Spent Yeast and Cultured Yeast Cells. Foods 2024; 13:1567. [PMID: 38790867 PMCID: PMC11121356 DOI: 10.3390/foods13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast, crucial in beer production, holds great potential owing to its ability to transform into a valuable by-product resource, known as brewer's spent yeast (BSY), with potentially beneficial physiological effects. This study aimed to compare the composition and soluble polysaccharide content of Brewer's spent yeast with those of cultured yeast strains, namely Saccharomyces cerevisiae (SC) and S. boulardii (SB), to facilitate the utilization of BSY as an alternative source of functional polysaccharides. BSY exhibited significantly higher carbohydrate content and lower crude protein content than SC and SB cells. The residues recovered through autolysis were 53.11%, 43.83%, and 44.99% for BSY, SC, and SB, respectively. Notably, the polysaccharide content of the BSY residue (641.90 μg/mg) was higher than that of SC (553.52 μg/mg) and SB (591.56 μg/mg). The yields of alkali-extracted water-soluble polysaccharides were 33.62%, 40.76%, and 42.97% for BSY, SC, and SB, respectively, with BSY comprising a comparable proportion of water-soluble saccharides made with SC and SB, including 49.31% mannan and 20.18% β-glucan. Furthermore, BSY demonstrated antioxidant activities, including superoxide dismutase (SOD), ABTS, and DPPH scavenging potential, suggesting its ability to mitigate oxidative stress. BSY also exhibited a significantly higher total phenolic compound content, indicating its potential to act as an effective functional food material.
Collapse
Affiliation(s)
| | | | - Legesse Shiferaw Chewaka
- Department of Agro-Food Resource, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju 54875, Republic of Korea; (H.J.L.); (B.-R.P.)
| |
Collapse
|
10
|
Guo R, Xiong J, Li P, Ma C, Zhao X, Cai W, Kong Y, Huang Q. Emulsified sausages with yeast protein as an animal fat replacer: Effects on nutritional composition, spatial structure, gel performance, and sensory quality. Meat Sci 2024; 210:109433. [PMID: 38278006 DOI: 10.1016/j.meatsci.2024.109433] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
This paper investigated the effect of yeast protein (YP)-fat replacement on the nutritional composition, spatial structure, gel performance, and sensory quality of emulsified sausages. YP is enriched with essential amino acids (36.49 g/100 g), which improved the nutritional quality of sausages whereas reducing its fat content. Moreover, YP could absorb water and fat, thus the YP-added sausages exhibiting an amount-dependent increase in emulsion stability and water migration. The microstructure illustrated that YP acted as a filler to improve structural homogeneity and compactness of the pork gel network. And YP-fat replacement could significantly enhance the hardness, gel strength and elasticity of sausages whereas decreasing the viscosity. Additionally, at partial or full YP-fat replacement (25-100%), the YP-added sausages scored higher in odor and texture, as well as better antioxidant stability than controls. Overall, YP can be employed as a new fat substitute for the preparation of healthy and nutritional sausages, while maintaining the sensory quality.
Collapse
Affiliation(s)
- Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jian Xiong
- Angel Yeast Co. Ltd., Yichang, Hubei Province 443003, China
| | - Pei Li
- Angel Yeast Co. Ltd., Yichang, Hubei Province 443003, China
| | - Chunlei Ma
- Angel Yeast Co. Ltd., Yichang, Hubei Province 443003, China
| | - Xiaoyun Zhao
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yaqiu Kong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
11
|
Lee S, Kim E, Jo M, Choi YJ. Characterization of yeast protein isolates extracted via high-pressure homogenization and pH shift: A promising protein source enriched with essential amino acids and branched-chain amino acids. J Food Sci 2024; 89:900-912. [PMID: 38193157 DOI: 10.1111/1750-3841.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
In the global food industry, plant-based protein isolates are gaining prominence as an alternative to animal-based counterparts. However, their nutritional value often falters due to insufficient essential amino acids. To address this issue, our study introduces a sustainable protein isolate derived from yeast cells, achieved through high-pressure homogenization (HPH) and alkali pH-shifting treatment. Subjected to HPH pressures ranging from 60 to 120 MPa and 1 to 10 cycles, higher pressure and cycle numbers resulted in enhanced disruption of yeast cells. Combining HPH with alkali pH-shifting treatment significantly augmented protein extraction. Four cycles of HPH at 100 MPa yielded the optimized protein content, resulting in a yeast protein isolate (YPI) with 75.3 g protein per 100 g powder, including 30.0 g of essential amino acids and 18.4 g of branched-chain amino acids per 100 g protein. YPI exhibited superior water and oil-holding capacities compared to pea protein isolate, whey protein isolate (WPI), and soy protein isolate. Although YPI exhibited lower emulsifying ability than WPI, it excelled in stabilizing protein-stabilized emulsions. For foaming, YPI outperformed others in both foaming ability and stabilizing protein-based foam. In conclusion, YPI surpasses numerous plant-based protein alternatives in essential amino acids and branched-chain amino acids contents, positioning it as an excellent candidate for widespread utilization as a sustainable protein source in the food industry, owing to its exceptional nutritional advantages, as well as emulsifying and foaming properties. PRACTICAL APPLICATION: This study introduces a sustainable protein isolate derived from yeast cells. YPI exhibited considerable promise as a protein source. Nutritionally, YPI notably surpassed plant-based protein isolates in EAA and BCAA contents. Functionally, YPI demonstrated superior water-holding and oil-holding capacities, as well as an effective emulsion and foam stabilizer.
Collapse
Affiliation(s)
- Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| |
Collapse
|
12
|
Snyman C, Mekoue Nguela J, Sieczkowski N, Divol B, Marangon M. Characterization of Mannoprotein Structural Diversity in Wine Yeast Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19727-19738. [PMID: 38049383 PMCID: PMC10722544 DOI: 10.1021/acs.jafc.3c05742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
The structure of yeast cell wall (CW) mannoproteins (MPs) influences their impact on wine properties. Yeast species produce a diverse range of MPs, but the link between properties and specific structural features has been ill-characterized. This study compared the protein and polysaccharide moieties of MP-rich preparations from four strains of four different enologically relevant yeast species, named Saccharomyces boulardii (SB62), Saccharomyces cerevisiae (SC01), Metschnikowia fructicola (MF77), and Torulaspora delbrueckii (TD70), and a commercial MP preparation. Monosaccharide determination revealed that SB62 MPs contained the highest mannose/glucose ratio followed by SC01, while polysaccharide size distribution analyses showed maximum molecular weights ranging from 1349 kDa for MF77 to 483 kDa for TD70. Protein identification analysis led to the identification of unique CW proteins in SB62, SC01, and TD70, as well as some proteins shared between different strains. This study reveals MP composition diversity within wine yeasts and paves the way toward their industrial exploitation.
Collapse
Affiliation(s)
- Carla Snyman
- South
African Grape and Wine Research Institute, Department of Viticulture
and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Department
of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020 Legnaro, Padova, Italy
| | | | | | - Benoit Divol
- South
African Grape and Wine Research Institute, Department of Viticulture
and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Matteo Marangon
- Department
of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020 Legnaro, Padova, Italy
- Interdepartmental
Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
| |
Collapse
|
13
|
Fernandes PAR, Coimbra MA. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr Polym 2023; 314:120965. [PMID: 37173007 DOI: 10.1016/j.carbpol.2023.120965] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Zeng F, Lai M, Li Q, Zhang H, Chen Z, Gong S, Liu X, Liu B. Anti-oxidative and anti-aging effects of mannoprotein-rich yeast cell wall enzymatic hydrolysate by modulating gut microbiota and metabolites in Caenorhabditis elegans. Food Res Int 2023; 170:112753. [PMID: 37316035 DOI: 10.1016/j.foodres.2023.112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
In this study, antioxidant and anti-aging studies were carried out by mannoprotein-rich yeast cell wall enzymatic hydrolysate (MYH) obtained by enzymatic hydrolysis of yeast cell wall through the Caenorhabditis elegans (C. elegans) model. It was found that MYH could improve the lifespan and anti-stress ability of C. elegans by increasing the activity of antioxidant enzymes such as T-SOD, GSH-PX and CAT, and reducing the levels of MDA, ROS and apoptosis. At the same time, through the verification expression of corresponding mRNA, it was found that MYH exerted antioxidant and anti-aging activities by up-regulating the translation of MTL-1, DAF-16, SKN-1 and SOD-3 mRNA, and down-regulating the translation of AGE-1 and DAF-2 mRNA. In addition, it was found that MYH could improve the composition and distribution of the gut microbiota of C. elegans, and significantly improve the level of metabolites through the sequencing of gut microbiota and untargeted metabolomic studies. It has contributed to studying the antioxidant and anti-aging activities of microorganisms such as yeast through the level of gut microbiota and metabolites and the development of related functional foods.
Collapse
Affiliation(s)
- Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiying Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibo Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China; School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhixian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
| | - Shiyu Gong
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Isolation, Characterization, and Compositional Analysis of Polysaccharides from Pinot Noir Wines: An Exploratory Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238330. [PMID: 36500422 PMCID: PMC9738191 DOI: 10.3390/molecules27238330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
It has been reported that polysaccharides in wine can interact with tannins and other wine components and modify the sensory properties of the wine. Unfortunately, the contribution of polysaccharides to wine quality is poorly understood, mainly due to their complicated structure and varied composition. In addition, the composition and molecular structure of polysaccharides in different wines can vary greatly. In this study, the polysaccharides were isolated from pinot noir wine, then separated into high-molecular-weight (PNWP-H) and low-molecular-weight (PNWP-L) fractions using membrane-based ultrafiltration. Each polysaccharide fraction was further studied using size exclusion chromatography, UV-Vis, FT-IR, matrix-assisted laser desorption/ionization-high-resolution mass spectrometry, and gas chromatography-mass spectrometry (GC-MS). The results showed that PNWP-L and PNWP-H had different chemical properties and compositions. The FT-IR analysis showed that PNWPs were acidic polysaccharides with α- and β-type glycosidic linkages. PNWP-L and PNWP-H had different α- and β-type glycosidic linkage structures. FT-IR showed stronger antisymmetric and symmetric stretching vibrations of carboxylate anions of uronic acids in PNWP-L, suggesting more uronic acid in PNWP-L. The size exclusion chromatography results showed that over 72% of the PNWP-H fraction had molecular sizes from 25 kDa to 670 kDa. Only a small percentage of smaller molecular polysaccharides was found in the PNWP-H fraction. In comparison, all of the polysaccharides in the PNWP-L fraction were below 25 KDa, with a majority distributed approximately 6 kDa (95.1%). GC-MS sugar composition analysis showed that PNWP-L was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose, while PNWP-H was mainly composed of mannose, arabinose, and galactose. The molecular size distribution and sugar composition analysis suggested that the PNWP-L primarily consisted of rhamnogalacturonans and polysaccharides rich in arabinose and galactose (PRAG). In comparison, PNWP-H were mostly mannoproteins and polysaccharides rich in arabinose and galactose (PRAG). Further research is needed to understand the impacts of these fractions on wine organoleptic properties.
Collapse
|
16
|
Structural characterization and emulsifier property of yeast mannoprotein enzymatically prepared with a β-1,6-glucanase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Węgrzyn A, Tsurtsumia A, Witkowski S, Freitas O, Figueiredo S, Cybińska J, Stawiński W. Vermiculite as a potential functional additive for water treatment bioreactors inhibiting toxic action of heavy metal cations upsetting the microbial balance. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128812. [PMID: 35398796 DOI: 10.1016/j.jhazmat.2022.128812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A new adsorbent that combines mineral vermiculite with the yeast Saccharomyces cerevisiae, was used for Cd2+ removal. The influence of vermiculite presence on the toxic effects of Cd2+ to Saccharomyces cerevisiae yeast was evaluated as a function of the microorganisms' respiratory activity (CO2 production). The Cd2+ toxicity increased with prolonged exposure time reaching the LC50 value of 857 and 489 mg L-1 after 30 and 120 min, respectively. The yeast managed to bioaccumulate 25.0 ± 0.6 mg g-1 of Cd2+ at the initial Cd2+ concentration of 741.9 mg L-1; the maximum Cd2+ adsorption capacity of vermiculite reached 25 ± 5 mg g-1. The addition of the mineral decreased the cations toxic effect; the LC20 value in vermiculite absence attained approximately 200 mg L-1 after 30 min and decreased to 80 mg L-1 after 2 h, while in the bio-mineral system it was at the level of 435 ± 50 mg L-1 without a significant change in time. The mineral provided a superior living environment for the yeast by removing part of the cations, releasing essential microelements and providing a protective, clay hutch-like habitat for the cells.
Collapse
Affiliation(s)
- Agnieszka Węgrzyn
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Avtandil Tsurtsumia
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Ilia State University, School of Natural Since and Engineering, Sustainable Natural And Forest Resources Management (MBA), Kakutsa Cholokashvili Ave 3/5, Tbilisi 0162, Georgia.
| | - Stefan Witkowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Olga Freitas
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| | - Sónia Figueiredo
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| | - Joanna Cybińska
- Faculty of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Łukasiewicz Research Network, PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Wojciech Stawiński
- Łukasiewicz Research Network, PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| |
Collapse
|
18
|
Alzandi AA, Naguib DM. Effect of yeast application on soil health and root metabolic status of corn seedlings under drought stress. Arch Microbiol 2022; 204:233. [PMID: 35357585 DOI: 10.1007/s00203-022-02843-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
The soil enzymes are the heart of the biochemical reactions that occur in the soil saving the soil nutrients needed for plant growth. Recently yeast's importance as plant growth-promoting microorganisms has great attention. This study evaluated the effect of yeast application on the soil enzymes activity and root metabolic status in corn plants under drought stress. A pot experiment was performed. The pots were divided into two groups; the first group was used for yeast application, the other group was used as a non-treated group. Each group was subdivided into two groups according to water treatment. One is 75%; the other is 45% of field capacity. Soil and root samples were taken at 5, 10, and 15 days after drought application for analysis. Soil samples were subjected to NPK and soil enzymes activity analysis. The root samples were subjected to determination NPK content, the osmolytes, lipid peroxidation, and antioxidant enzymes. The present results showed that yeast application upregulated the soil enzymes under drought which protected the NPK content in the soil. Therefore NPK in the treated group was significantly higher than that in the non-treated group. Also, yeast application improved the roots' osmotic status, the treated group showed significant osmolytes accumulation. Besides that the antioxidant enzymes activity status in the treated group was significantly higher than that in the non-treated group which significantly decreased the lipid peroxidation in the treated group. Yeast application can be an effective promising tool for improving the corn plant tolerance against drought stress.
Collapse
Affiliation(s)
- Abdulrhman Ali Alzandi
- Biology Department, Faculty of Arts and Science in Qilwah, Albaha University, Qilwah, Kingdom of Saudi Arabia
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
- Biology Department, Faculty of Arts and Science in Qilwah, Albaha University, Qilwah, Kingdom of Saudi Arabia.
| |
Collapse
|
19
|
Antimicrobial and prebiotic activity of mannoproteins isolated from conventional and nonconventional yeast species-the study on selected microorganisms. World J Microbiol Biotechnol 2022; 38:256. [PMID: 36319710 PMCID: PMC9626417 DOI: 10.1007/s11274-022-03448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Yeast mannoproteins are proposed as a paraprobiotics with antimicrobial and prebiotic properties. They can be used as biopreservatives in food and in diseases therapies. The knowledge about the specificity and/or capability of their influence on the growth of different microorganism is limited. The study determined the effect of mannoprotein preparations of Saccharomyces cerevisiae (S. cerevisiae) ATCC 7090 and nonconventional yeast origin [Metschnikowia reukaufii (M. reukaufii) WLP 4650 and Wickerhamomyces anomalus (W. anomalus) CCY 38-1-13] on the growth of selected bacteria of the genera: Lactobacilllus, Limosilatobacillus, Limosilatobacillus, Bifidobacterium, Staphylococcus, Enterococcus, Pseudomonas, Escherichia, Proteus and Salmonella. The degree of stimulation or growth inhibition of tested bacteria depended on the type and dose of the mannoprotein and the bacterial strain. The addition of the tested preparations in the entire range of applied concentrations had a positive effect especially on the growth of Lactobacillus arabinosus ATCC 8014 and Bifidobacterium animalis subsp. lactis B12. Mannoproteins isolated from S. cerevisiae limited the growth of the Escherichia coli (E. coli) ATCC 25922, Pseudomonas aureoginosa (P. aureoginosa) ATCC 27853, Proteus mirabilis ATCC 35659 and Salmonella Enteritidis ATCC 13076 to the greatest extent, while preparations of M. reukaufii and W. anomalus origin most effectively limited the growth of Staphylococcus aureus strains, E. coli and P. aureoginosa. The growth of Enterococcus faecalis was stimulated by the presence of all studied preparations in most of the concentrations used. Further research will determine how the purification process of studied mannoproteins or oligosaccharide fractions, its structure and composition influence on the growth of selected bacteria and what is the mechanism of its activity.
Collapse
|