1
|
Wang W, Wang H, Zhang Z, Li W, Yin X, Long Y. Dual RNA sequencing during Trichoderma harzianum-Phytophthora capsici interaction reveals multiple biological processes involved in the inhibition and highlights the cell wall as a potential target. PEST MANAGEMENT SCIENCE 2024; 80:4533-4542. [PMID: 38742618 DOI: 10.1002/ps.8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Haidong Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Zhuzhu Zhang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Xianhui Yin
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
2
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Fatima N, Shahbaz M, Akram M, Sathiya Seelan JS, Ali A, Ahmad S. Deciphering fungicide resistance in Phytophthora: mechanisms, prevalence, and sustainable management approaches. World J Microbiol Biotechnol 2024; 40:302. [PMID: 39150639 DOI: 10.1007/s11274-024-04108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Punjab, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Salman Ahmad
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| |
Collapse
|
3
|
Song J, Zheng C, Qiu M, Zhan XP, Zhang Z, Zhang H, Shi N, Zhang L, Yu Y, Nicolaisen M, Xu L, Fang H. Mechanisms Underlying the Overlooked Chiral Fungicide-Driven Enantioselective Proliferation of Antibiotic Resistance in Earthworm Intestinal Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2931-2943. [PMID: 38306257 DOI: 10.1021/acs.est.3c07761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.
Collapse
Affiliation(s)
- Jiajin Song
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Zihan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Luqing Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse 4200, Denmark
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hua Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Dai T, Yang J, Zhao C, Chen J, Zhang C, Wang Z, Peng Q, Liu P, Miao J, Liu X. Unveiling Vacuolar H +-ATPase Subunit a as the Primary Target of the Pyridinylmethyl-Benzamide Fungicide, Fluopicolide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1527-1538. [PMID: 38193425 DOI: 10.1021/acs.jafc.3c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
An estimated 240 fungicides are presently in use, but the direct targets for the majority remain elusive, constraining fungicide development and efficient resistance monitoring. In this study, we found that Pcα-actinin knockout did not influence the sensitivity of Phytophthora capsici to fluopicolide, which is a notable oomycete inhibitor. Using a combination of Bulk Segregant Analysis Sequencing and Drug Affinity Responsive Target Stability (DARTS) assays, the vacuolar H+-ATPase subunit a (PcVHA-a) was pinpointed as the target protein of fluopicolide. We also confirmed four distinct point mutations in PcVHA-a responsible for fluopicolide resistance in P. capsici through site-directed mutagenesis. Molecular docking, ATPase activity assays, and a DARTS assay suggested a fluopicolide-PcVHA-a interaction. Sequence analysis and further molecular docking validated the specificity of fluopicolide for oomycetes or fish. These findings support the claim that PcVHA-a is the target of fluopicolide, proposing vacuolar H+-ATPase as a promising target for novel fungicide development.
Collapse
Affiliation(s)
- Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jikun Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuang Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinzhu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
5
|
Zhang F, Chen S, Cui T, Zhang C, Dai T, Hao J, Liu X. Novel function of the PsDMAP1 protein in regulating the growth and pathogenicity of Phytophthora sojae. Int J Biol Macromol 2023; 253:127198. [PMID: 37802447 DOI: 10.1016/j.ijbiomac.2023.127198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
The DNA methyltransferase 1-associated protein (DMAP1) was initially identified as an activator of DNA methyltransferase 1 (DNMT1), a conserved eukaryotic enzyme involved in diverse molecular processes, including histone acetylation and chromatin remodeling. However, the roles and regulatory mechanisms of DMAP1 in filamentous pathogens are still largely unknown. Here, employing bioinformatic analysis, we identified PsDMAP1 in P. sojae, which features a canonical histone tail-binding domain, as the ortholog of the human DMAP1. A phylogenetic analysis of DMAP1 protein sequences across diverse eukaryotic organisms revealed the remarkable conservation and distinctiveness of oomycete DMAP1 orthologs. Homozygous knockout of PsDMAP1 resulted in the mortality of P. sojae. Furthermore, silencing of PsDMAP1 caused a pronounced reduction in mycelial growth, production of sporangia and zoospore, cystospore germination, and virulence. PsDMAP1 also played a crucial role in the response of P. sojae to reactive oxygen species (ROS) and osmotic stresses. Moreover, PsDMAP1 interacted with DNA N6-methyladenine (6 mA) methyltransferase PsDAMT1, thereby enhancing its catalytic activity and effectively regulating 6 mA abundance in P. sojae. Our findings reveal the functional importance of PsDAMP1 in the development and infection of P. sojae, and this marks the initial exploration of the novel 6 mA regulator PsDMAP1 in plant pathogens.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanshan Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tongshan Cui
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tan Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
6
|
Mu S, Dou L, Ye Y, Zhang H, Shi J, Zhang K. Insights on the isolation, identification, and degradation characteristics of three bacterial strains against mandipropamid and their application potential for polluted soil remediation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105376. [PMID: 36963922 DOI: 10.1016/j.pestbp.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Bacteria-induced biodegradation techniques have become an effective approach for removing pesticide residues from polluted soils. However, their effect on chiral fungicides must be systematically evaluated and the efficiency and risk of each chiral enantiomer must be better understood. In this study, we isolated and enriched seven bacterial strains that are able to degrade mandipropamid from contaminated soil samples. Three bacterial strains with high degradation efficiency (63.6%-73.4%) were screened and identified as Pseudomonas sp. (M01), Mycolicibacterium parafortuitum (MW05), and Stenotrophomonas maltophilia (MW09) by morphological and 16S rRNA gene sequencing analyses. The degradation characteristics of three strains (M01, MW05, and MW09) was investigated and it was revealed that pH, temperature, and initial concentration of mandipropamid significantly impacted their degradation efficiency. The optimal conditions for degradation were a nutrient source of mandipropamid and an inoculation amount of 5%. We used a Box-Behnken model experiment and an analysis of variance to determine the most suitable conditions for degrading mandipropamid at various pH, temperature, and initial concentration levels. A response surface methodology analysis showed that the three strains had the highest mandipropamid degradation efficiency (> 96%) under various conditions (pH: 7.15-7.71, temperature: 28.61-30.76 °C, initial concentration: 5.524-5.934 mg/L). Mycelial, intracellular, and extracellular enzymes also had an impact on the degradation of mandipropamid enantiomers by the three strains. In soil remediation trials, the three bacterial strains could effectively enantioselectively degrade rac-mandipropamid residues in polluted sterilized and natural soil samples (R-enantiomer was degraded faster) and influence the activity of urease and β-glucosidase in the soil. The results revealed several candidate bacterial strains for mandipropamid biodegradation and provide information on mandipropamid biological detoxification in soil environments.
Collapse
Affiliation(s)
- Shiyin Mu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Dou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Ye
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jing Shi
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D of Guizhou Medical University, Guiyang 550004, China.
| | - Kankan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. Int J Biol Macromol 2022; 222:1665-1675. [PMID: 36167102 DOI: 10.1016/j.ijbiomac.2022.09.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
Host-induced gene silencing (HIGS) is a RNA-based system depend on the biological macromolecules generated in plants to control diseases. However, the effector proteins active in the HIGS are uncertain, which impedes its further application, especially for oomycete that lack efficient HIGS targets. Phytophthora capsici is an important oomycete causes blight in over 70 crops. Here, we comprehensively screened efficient HIGS vectors targeting PcCesA3 or PcOSBP1 in P. capsici to better control it and explore the characteristics of efficient HIGS vectors. Among the 26 vectors with different lengths and structures, we found that hairpin vectors with a 70 nt loop and ~ 500 bp stem showed the highest control efficacy, with the expressing of the screened vectors, the infection and fertility of P. capsici were greatly inhibited in transgenic Nicotiana benthamiana. Based on these efficient vectors, we demonstrated that the amount of HIGS vector generated small interfering RNAs (siRNAs) was positively related to gene silencing efficiency and resistance, and that NbDCL3 and NbDCL4 were the key effectors producing siRNAs. This work discovers the principles for efficient HIGS vectors design, and elucidates the molecular mechanism of HIGS, which could benefit the control of many other plant diseases based on HIGS.
Collapse
|
8
|
Li T, Cai M, Wang W, Dai T, Zhang C, Zhang B, Shen J, Wang Y, Liu X. PcCesA1 is involved in the polar growth, cellulose synthesis, and glycosidic linkage crosslinking in the cell wall of Phytophthora capsici. Int J Biol Macromol 2022; 208:720-730. [PMID: 35364202 DOI: 10.1016/j.ijbiomac.2022.03.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
Abstract
Phytophthora capsici is a destructive plant pathogen that infects a wide range of hosts worldwide. The P. capsici cell wall, rich in cellulose, is vital for hyphal growth and host interactions. However, the enzymes involved in its synthesis remain largely unelucidated. In the current study, we functionally characterized the cellulose synthase gene PcCesA1, which is highly conserved in Phytophthora. By using CRISPR/Cas9-mediated gene replacement and in situ complementation system, it was found PcCesA1 is essential for the mycelial growth, cystospore germination, and pathogenicity of P. capsici. The normal deposition of newly synthesized cell wall components and the polar growth point formation were disrupted in PcCesA1 knockout mutants, suggesting that PcCesA1 plays an important role in the polar growth of P. capsici. Compared with the wild-type strains, PcCesA1 knockout mutants displayed a thicker inner layer cell wall and were more sensitive to carboxylic acid amide fungicides (CAAs). The contents of the cell wall polysaccharides 1,4-Glc, 1,4,6-Glc, and 1,3,4-Glc were reduced in PcCesA1 knockout mutants, suggesting that PcCesA1 affected cellulose content and glycosidic linkage crosslinking in the cell wall. Our findings demonstrate that PcCesA1 is required for cell wall biogenesis. Therefore, PcCesA1 may be a potential target for Phytophthora disease control.
Collapse
Affiliation(s)
- Tengjiao Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weizhen Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Tan Dai
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Can Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jinghuan Shen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuke Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|