1
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
2
|
Alamin MH, Rahaman MM, Ferdousi F, Sarker A, Ali MA, Hossen MB, Sarker B, Kumar N, Mollah MNH. In-silico discovery of common molecular signatures for which SARS-CoV-2 infections and lung diseases stimulate each other, and drug repurposing. PLoS One 2024; 19:e0304425. [PMID: 39024368 PMCID: PMC11257407 DOI: 10.1371/journal.pone.0304425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/12/2024] [Indexed: 07/20/2024] Open
Abstract
COVID-19 caused by SARS-CoV-2 is a global health issue. It is yet a severe risk factor to the patients, who are also suffering from one or more chronic diseases including different lung diseases. In this study, we explored common molecular signatures for which SARS-CoV-2 infections and different lung diseases stimulate each other, and associated candidate drug molecules. We identified both SARS-CoV-2 infections and different lung diseases (Asthma, Tuberculosis, Cystic Fibrosis, Pneumonia, Emphysema, Bronchitis, IPF, ILD, and COPD) causing top-ranked 11 shared genes (STAT1, TLR4, CXCL10, CCL2, JUN, DDX58, IRF7, ICAM1, MX2, IRF9 and ISG15) as the hub of the shared differentially expressed genes (hub-sDEGs). The gene ontology (GO) and pathway enrichment analyses of hub-sDEGs revealed some crucial common pathogenetic processes of SARS-CoV-2 infections and different lung diseases. The regulatory network analysis of hub-sDEGs detected top-ranked 6 TFs proteins and 6 micro RNAs as the key transcriptional and post-transcriptional regulatory factors of hub-sDEGs, respectively. Then we proposed hub-sDEGs guided top-ranked three repurposable drug molecules (Entrectinib, Imatinib, and Nilotinib), for the treatment against COVID-19 with different lung diseases. This recommendation is based on the results obtained from molecular docking analysis using the AutoDock Vina and GLIDE module of Schrödinger. The selected drug molecules were optimized through density functional theory (DFT) and observing their good chemical stability. Finally, we explored the binding stability of the highest-ranked receptor protein RELA with top-ordered three drugs (Entrectinib, Imatinib, and Nilotinib) through 100 ns molecular dynamic (MD) simulations with YASARA and Desmond module of Schrödinger and observed their consistent performance. Therefore, the findings of this study might be useful resources for the diagnosis and therapies of COVID-19 patients who are also suffering from one or more lung diseases.
Collapse
Affiliation(s)
- Muhammad Habibulla Alamin
- Faculty of Science, Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md. Matiur Rahaman
- Faculty of Science, Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, P. R. China
| | - Farzana Ferdousi
- Faculty of Science, Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Arnob Sarker
- Faculty of Science, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Faculty of Science, Department of Statistics, Bioinformatics Laboratory (Dry), University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Ahad Ali
- Faculty of Science, Department of Statistics, Bioinformatics Laboratory (Dry), University of Rajshahi, Rajshahi, Bangladesh
- Faculty of Science, Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Bayazid Hossen
- Faculty of Science, Department of Statistics, Bioinformatics Laboratory (Dry), University of Rajshahi, Rajshahi, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Bandhan Sarker
- Faculty of Science, Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Nishith Kumar
- Faculty of Science, Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md. Nurul Haque Mollah
- Faculty of Science, Department of Statistics, Bioinformatics Laboratory (Dry), University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
3
|
Wang L, Lin F, Liu Y, Li W, Ding Q, Duan X, Yang L, Bai Z, Zhang M, Guo Y. Wogonin protects against bleomycin-induced mouse pulmonary fibrosis via the inhibition of CDK9/p53-mediated cell senescence. Front Pharmacol 2024; 15:1407891. [PMID: 39040475 PMCID: PMC11260675 DOI: 10.3389/fphar.2024.1407891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary fibrosis (PF) is a fatal interstitial lung disease associated with declining pulmonary function but currently with few effective drugs. Cellular senescence has been implicated in the pathogenesis of PF and could be a potential therapeutic target. Emerging evidence suggests wogonin, the bioactive compound isolated from Scutellaria baicalensis, owns the anti-senescence properties, however, the possible impact of wogonin on PF and the potential mechanisms remain unclear. In this study, a well-established mouse model of PF was utilized which mice were administrated with bleomycin (BLM). Strikingly, wogonin treatment significantly reduced fibrosis deposition in the lung induced by BLM. In vitro, wogonin also suppressed fibrotic markers of cultured epithelial cells stimulated by BLM or hydrogen peroxide. Mechanistic investigation revealed that wogonin attenuated the expressions of DNA damage marker γ-H2AX and senescence-related markers including phosphorylated p53, p21, retinoblastoma protein (pRB), and senescence-associated β-galactosidase (SA-β-gal). Moreover, wogonin, as a direct and selective inhibitor of cyclin-dependent kinase 9 (CDK9), exhibited anti-fibrotic capacity by inhibiting CDK9 and p53/p21 signalling. In conclusion, wogonin protects against BLM-induced PF in mice through the inhibition of cell senescence via the regulation of CDK9/p53 and DNA damage pathway. This is the first study to demonstrate the beneficial effect of wogonin on PF, and its implication as a novel candidate for PF therapy.
Collapse
Affiliation(s)
- Libo Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Youli Liu
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Min Zhang
- King’s College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, London, United Kingdom
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
4
|
Xu J, Abdulsalam Khaleel R, Zaidan HK, Faisal Mutee A, Fahmi Fawy K, Gehlot A, Abbas AH, Arias Gonzáles JL, Amin AH, Ruiz-Balvin MC, Imannezhad S, Bahrami A, Akhavan-Sigari R. Discovery of common molecular signatures and drug repurposing for COVID-19/Asthma comorbidity: ACE2 and multi-partite networks. Cell Cycle 2024; 23:405-434. [PMID: 38640424 PMCID: PMC11529202 DOI: 10.1080/15384101.2024.2340859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing global coronavirus disease-2019 (COVID-19) pandemic. This study aimed to elucidate potential therapeutic avenues by scrutinizing approved drugs through the identification of the genetic signature associated with SARS-CoV-2 infection in individuals with asthma. This exploration was conducted through an integrated analysis, encompassing interaction networks between the ACE2 receptor and common host (co-host) factors implicated in COVID-19/asthma comorbidity. The comprehensive analysis involved the identification of common differentially expressed genes (cDEGs) and hub-cDEGs, functional annotations, interaction networks, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and module construction. Interaction networks were used to identify overlapping disease modules and potential drug targets. Computational biology and molecular docking analyzes were utilized to discern functional drug modules. Subsequently, the impact of the identified drugs on the expression of hub-cDEGs was experimentally validated using a mouse model. A total of 153 cDEGs or co-host factors associated with ACE2 were identified in the COVID-19 and asthma comorbidity. Among these, seven significant cDEGs and proteins - namely, HRAS, IFNG, JUN, CDH1, TLR4, ICAM1, and SCD-were recognized as pivotal host factors linked to ACE2. Regulatory network analysis of hub-cDEGs revealed eight top-ranked transcription factors (TFs) proteins and nine microRNAs as key regulatory factors operating at the transcriptional and post-transcriptional levels, respectively. Molecular docking simulations led to the proposal of 10 top-ranked repurposable drug molecules (Rapamycin, Ivermectin, Everolimus, Quercetin, Estradiol, Entrectinib, Nilotinib, Conivaptan, Radotinib, and Venetoclax) as potential treatment options for COVID-19 in individuals with comorbid asthma. Validation analysis demonstrated that Rapamycin effectively inhibited ICAM1 expression in the HDM-stimulated mice group (p < 0.01). This study unveils the common pathogenesis and genetic signature underlying asthma and SARS-CoV-2 infection, delineated by the interaction networks of ACE2-related host factors. These findings provide valuable insights for the design and discovery of drugs aimed at more effective therapeutics within the context of lung disease comorbidities.
Collapse
Affiliation(s)
- Jiajun Xu
- College of Veterinary & Life Sciences, the University of Glasgow, Glasgow, UK
| | | | | | | | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Anita Gehlot
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | | - José Luis Arias Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw, Poland
| |
Collapse
|
5
|
Bernardo L, Lomagno A, Mauri PL, Di Silvestre D. Integration of Omics Data and Network Models to Unveil Negative Aspects of SARS-CoV-2, from Pathogenic Mechanisms to Drug Repurposing. BIOLOGY 2023; 12:1196. [PMID: 37759595 PMCID: PMC10525644 DOI: 10.3390/biology12091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 health emergency, affecting and killing millions of people worldwide. Following SARS-CoV-2 infection, COVID-19 patients show a spectrum of symptoms ranging from asymptomatic to very severe manifestations. In particular, bronchial and pulmonary cells, involved at the initial stage, trigger a hyper-inflammation phase, damaging a wide range of organs, including the heart, brain, liver, intestine and kidney. Due to the urgent need for solutions to limit the virus' spread, most efforts were initially devoted to mapping outbreak trajectories and variant emergence, as well as to the rapid search for effective therapeutic strategies. Samples collected from hospitalized or dead COVID-19 patients from the early stages of pandemic have been analyzed over time, and to date they still represent an invaluable source of information to shed light on the molecular mechanisms underlying the organ/tissue damage, the knowledge of which could offer new opportunities for diagnostics and therapeutic designs. For these purposes, in combination with clinical data, omics profiles and network models play a key role providing a holistic view of the pathways, processes and functions most affected by viral infection. In fact, in addition to epidemiological purposes, networks are being increasingly adopted for the integration of multiomics data, and recently their use has expanded to the identification of drug targets or the repositioning of existing drugs. These topics will be covered here by exploring the landscape of SARS-CoV-2 survey-based studies using systems biology approaches derived from omics data, paying particular attention to those that have considered samples of human origin.
Collapse
Affiliation(s)
| | | | | | - Dario Di Silvestre
- Institute for Biomedical Technologies—National Research Council (ITB-CNR), 20054 Segrate, Italy; (L.B.); (A.L.); (P.L.M.)
| |
Collapse
|
6
|
Saini S, Khurana S, Saini D, Rajput S, Thakur CJ, Singh J, Jaswal A, Kapoor Y, Kumar V, Saini A. In silico analysis of genomic landscape of SARS-CoV-2 and its variant of concerns (Delta and Omicron) reveals changes in the coding potential of miRNAs and their target genes. Gene 2023; 853:147097. [PMID: 36470485 PMCID: PMC9721428 DOI: 10.1016/j.gene.2022.147097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 related morbidities and mortalities are still continued due to the emergence of new variants of SARS-CoV-2. In the last few years, viral miRNAs have been the centre of study to understand the disease pathophysiology. In this work, we aimed to predict the change in coding potential of the viral miRNAs in SARS-CoV-2's VOCs, Delta and Omicron compared to the Reference (Wuhan origin) strain using bioinformatics tools. After ab-intio based screening by the Vmir tool and validation, we retrieved 22, 6, and 6 pre-miRNAs for Reference, Delta, and Omicron. Most of the predicted unique pre-miRNAs of Delta and Omicron were found to be encoded from the terminal and origin of the genomic sequence, respectively. Mature miRNAs identified by MatureBayes from the unique pre-miRNAs were used for target identification using miRDB. A total of 1786, 216, and 143 high-confidence target genes were captured for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The GO and KEGG pathways terms analysis revealed the involvement of Delta miRNAs targeted genes in the pathways such as Human cytomegalovirus infection, Breast cancer, Apoptosis, Neurotrophin signaling, and Axon guidance whereas the Sphingolipid signaling pathway was found for the Omicron. Furthermore, we focussed our analysis on target genes that were validated through GEO's (Gene Expression Omnibus) DEGs (Differentially Expressed Genes) dataset, in which FGL2, TNSF12, OGN, GDF11, and BMP11 target genes were found to be down-regulated by Reference miRNAs and YAE1 and RSU1 by Delta. Few genes were also observed to be validated among in up-regulated gene set of the GEO dataset, in which MMP14, TNFRSF21, SGMS1, and TMEM192 were related to Reference whereas ZEB2 was detected in all three strains. This study thus provides an in-silico based analysis that deciphered the unique pre-miRNAs in Delta and Omicron compared to Reference. However, the findings need future wet lab studies for validation.
Collapse
Affiliation(s)
- Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India; Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Savi Khurana
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Dikshant Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Saru Rajput
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Jeevisha Singh
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Akanksha Jaswal
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Yogesh Kapoor
- Department of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Varinder Kumar
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
7
|
Anti-Inflammatory Mechanisms of Total Flavonoids from Mosla scabra against Influenza A Virus-Induced Pneumonia by Integrating Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2154485. [PMID: 35722153 PMCID: PMC9200497 DOI: 10.1155/2022/2154485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Influenza virus is one of the most common infectious pathogens that could cause high morbidity and mortality in humans. However, the occurrence of drug resistance and serious complications extremely complicated the clinic therapy. Mosla scabra is a natural medicinal plant used for treating various lung and gastrointestinal diseases, including viral infection, cough, chronic obstructive pulmonary disease, acute gastroenteritis, and diarrhoea. But the therapeutic effects of this herbal medicine had not been expounded clearly. In this study, a network pharmacology approach was employed to investigate the protective mechanism of total flavonoids from M. scabra (MSTF) against influenza A virus- (IAV-) induced acute lung damage and inflammation. The active compounds of MSTF were analyzed by LC-MS/MS and then evaluated according to their oral bioavailability and drug-likeness index. The potential targets of each active compound in MSTF were identified by using PharmMapper Server, whereas the potential genes involved in IAV infection were obtained from GeneGards. The results showed that luteoloside, apigenin, kaempherol, luteolin, mosloflavone I, and mosloflavone II were the main bioactive compounds found in MSTF. Primarily, 23 genes were identified as the targets of those five active compounds, which contributed to the inactivation of chemical carcinogenesis ROS, lipid and atherosclerosis, MAPK signaling pathway, pathways in cancer, PI3K-AKT signaling pathway, proteoglycans in cancer, and viral carcinogenesis. Finally, the animal experiments validated that MSTF improved IAV-induced acute lung inflammation via inhibiting MAPK, PI3K-AKT, and oxidant stress pathways. Therefore, our study demonstrated the potential inhibition of MSTF on viral pneumonia in mice and provided a strategy to characterize the molecular mechanism of traditional Chinese medicine by a combinative method using network pharmacology and experimental validation.
Collapse
|
8
|
Qu N, Hui Z, Shen Z, Kan C, Hou N, Sun X, Han F. Thyroid Cancer and COVID-19: Prospects for Therapeutic Approaches and Drug Development. Front Endocrinol (Lausanne) 2022; 13:873027. [PMID: 35600591 PMCID: PMC9114699 DOI: 10.3389/fendo.2022.873027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy and the reported incidence of thyroid cancer has continued to increase in recent years. Since 2019, coronavirus disease 2019 (COVID-19) has been spreading worldwide in a global pandemic. COVID-19 aggravates primary illnesses and affects disease management; relevant changes include delayed diagnosis and treatment. The thyroid is an endocrine organ that is susceptible to autoimmune attack; thus, thyroid cancer after COVID-19 has gradually attracted attention. Whether COVID-19 affects the diagnosis and treatment of thyroid cancer has also attracted the attention of many researchers. This review examines the literature regarding the influence of COVID-19 on the pathogenesis, diagnosis, and treatment of thyroid cancer; it also focuses on drug therapies to promote research into strategies for improving therapy and management in thyroid cancer patients with COVID-19.
Collapse
Affiliation(s)
- Na Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhixin Shen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Fang Han, ; Xiaodong Sun,
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Fang Han, ; Xiaodong Sun,
| |
Collapse
|