1
|
Mathew MM, M G, Unnikrishnan G. Facile preparation and characterization of biodegradable and biocompatible UV shielding transdermal patches based on natural rubber latex- dextrin blends. Int J Biol Macromol 2024; 277:134183. [PMID: 39112113 DOI: 10.1016/j.ijbiomac.2024.134183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The physico-chemical and biological properties of natural rubber latex (NRL), entailing its biodegradability and biocompatibility, render it a promising material for various biomedical applications. This research explores the facile blending of NRL with dextrin in different compositions to investigate its potential as a prospective UV shielding transdermal patch for biomedical applications. The superior compatibility between the polymers after blending and the improved thermal stability have been established through FTIR, DSC, and TGA examinations, respectively. Optimization of blended polymers for compatibility, wettability, crystallinity, and static mechanical properties has been performed. Morphology characterization conducted via SEM and AFM techniques suggests a uniform morphology for the optimized blend system. The UV shielding ability of the blend has been confirmed by the evaluation of in-vitro UV shielding performance, UV protection factor (UPF), and the superior protection of the optimized system on living cells upon UV irradiation. The observed cell viability, swelling, erosion, porosity, hemocompatibility, and soil degradation properties suggest the NRL-DXT combination for the possible development of high-quality transdermal patches.
Collapse
Affiliation(s)
| | - Gopika M
- National Institute of Technology Calicut, Calicut P.O 673601, India
| | - G Unnikrishnan
- National Institute of Technology Calicut, Calicut P.O 673601, India.
| |
Collapse
|
2
|
Chen X, Zheng J, You L, Qiu T, Christoforo T, Wei Y. Wormwood-infused porous-CaCO 3 for synthesizing antibacterial natural rubber latex. Int J Biol Macromol 2024; 260:129322. [PMID: 38242404 DOI: 10.1016/j.ijbiomac.2024.129322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Wormwood leaf is a traditional Chinese herbal medicine with a high medicinal value and long application history and its essential oil is a high-purity plant oil extracted from Wormwood leaf. Pharmacological research reveals that Wormwood leaf and Wormwood essential oil are a broad-spectrum antibacterial and antiviral drug, which can inhibit and kill many bacteria and viruses. We loaded wormwood extract on porous calcium carbonate (Porous-CaCO3) and introduced it and Wormwood essential oil into Natural rubber latex (NRL), thus synthesizing NRL composites with excellent vitro and in vivo antibacterial effect, cell compatibility and mechanical properties. This NRL material can delay the light aging and thermal oxidation of some mechanical properties, which provides a broader avenue for its commercialization.
Collapse
Affiliation(s)
- Xi Chen
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China; Fujian Provincial Colleges and Unversity Engineering Research Center of Soild Waste Resource Utilization, Longyan University, Longyan, Fujian 364000, PR China.
| | - JiaQi Zheng
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China
| | - LinXin You
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China
| | - Tian Qiu
- College of Chemistry and Material science, Longyan University, Longyan, Fujian 364000, PR China
| | - Tyler Christoforo
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
3
|
Wang J, Li S, Yang L, Liu B, Xie S, Qi R, Zhan Y, Xia H. Graphene-Based Hybrid Fillers for Rubber Composites. Molecules 2024; 29:1009. [PMID: 38474521 DOI: 10.3390/molecules29051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Graphene and its derivatives have been confirmed to be among the best fillers for rubber due to their excellent properties, such as high mechanical strength, improved interface interaction, and strain-induced crystallization capabilities. Graphene rubber materials can be widely used in tires, shoes, high-barrier conductive seals, electromagnetic shielding seals, shock absorbers, etc. In order to reduce the graphene loading and endow more desirable functions to rubber materials, graphene-based hybrid fillers are extensively employed, which can effectively enhance the performance of rubber composites. This review briefly summarizes the recent research on rubber composites with graphene-based hybrid fillers consisting of carbon black, silica, carbon nanotubes, metal oxide, and one-dimensional nanowires. The preparation methods, performance improvements, and applications of different graphene-based hybrid fillers/rubber composites have been investigated. This study also focuses on methods that can ensure the effectiveness of graphene hybrid fillers in reinforcing rubber composites. Furthermore, the enhanced mechanism of graphene- and graphene derivative-based hybrid fillers in rubber composites is investigated to provide a foundation for future studies.
Collapse
Affiliation(s)
- Jian Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shijiu Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Li Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Baohua Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Songzhi Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Qi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanhu Zhan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Zhu W, Li B, Liu J, Sun S, Zhang Y, Zhang D, Li C, Sun T, Qin H, Shi J, Shi Z. A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules 2024; 29:913. [PMID: 38398663 PMCID: PMC10891501 DOI: 10.3390/molecules29040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
A simple strategy was adopted for the preparation of an antimicrobial natural rubber/graphene oxide (NR/GO) composite film modified through the use of zwitterionic polymer brushes. An NR/GO composite film with antibacterial properties was prepared using a water-based solution-casting method. The composited GO was dispersed uniformly in the NR matrix and compensated for mechanical loss in the process of modification. Based on the high bromination activity of α-H in the structure of cis-polyisoprene, the composite films were brominated on the surface through the use of N-bromosuccinimide (NBS) under the irradiation of a 40 W tungsten lamp. Polymerization was carried out on the brominated films using sulfobetaine methacrylate (SBMA) as a monomer via surface-initiated atom transfer radical polymerization (SI-ATRP). The NR/GO composite films modified using polymer brushes (PSBMAs) exhibited 99.99% antimicrobial activity for resistance to Escherichia coli and Staphylococcus aureus. A novel polymer modification strategy for NR composite materials was established effectively, and the enhanced antimicrobial properties expand the application prospects in the medical field.
Collapse
Affiliation(s)
- Wenya Zhu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Bangsen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Jinrui Liu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Shishu Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Yan Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Dashuai Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Chen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Tianyi Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Huaide Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jianjun Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Zaifeng Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| |
Collapse
|
5
|
Asami J, Quevedo BV, Santos AR, Giorno LP, Komatsu D, de Rezende Duek EA. The impact of non-deproteinization on physicochemical and biological properties of natural rubber latex for biomedical applications. Int J Biol Macromol 2023; 253:126782. [PMID: 37690638 DOI: 10.1016/j.ijbiomac.2023.126782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Latex is a colloidal suspension derived from the Hevea brasiliensis tree, derived from natural rubber, poly(isoprene), and assorted constituents including proteins and phospholipids. These constituents are inherent to both natural rubber and latex serum. This investigation was undertaken to examine the impact of the deproteinization process on chemical and biological dynamics of natural rubber latex. Natural Rubber (NR) extracted from the pure latex (LNCP) was obtained through centrifugation, followed by six rounds of solvent purification (LP6). The structure was characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), swelling test, surface zeta potential (ζ), scanning electron microscopy (SEM) and in vitro assay. The results revealed that the LP6 group presented decreased swelling kinetics, reduced cell adhesion and proliferation, and a smoother surface with decreased negative surface charge. Conversely, the LNCP group shown accelerated swelling, heightened adhesion and cellular growth, and a more negatively charged and rougher surface. As such, the attributes of latex serum and proteins have potential usage across numerous biomedical applications.
Collapse
Affiliation(s)
- Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.
| | - Bruna V Quevedo
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Arnaldo R Santos
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Pastena Giorno
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| |
Collapse
|
6
|
Masa A, Jehsoh N, Dueramae S, Hayeemasae N. Boosting the Antibacterial Performance of Natural Rubber Latex Foam by Introducing Silver-Doped Zinc Oxide. Polymers (Basel) 2023; 15:polym15041040. [PMID: 36850322 PMCID: PMC9959198 DOI: 10.3390/polym15041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Natural rubber (NR) latex foam is one of the rubber products that are increasingly in demand in the market. This is simply because of its lightweight, good thermal insulation, and resilience. The applications of NR latex foam are mostly for pillows and mattresses. This has resulted in these products requiring antibacterial performance which is very important for the safety of the end-users. In this study, the antibacterial NR latex foam was prepared by incorporating the silver-doped zinc oxide (Ag-doped ZnO) into the NR latex foam. Ag-doped ZnO was prepared by microwave-assisted method and then characterized through morphological characteristics and X-ray diffraction (XRD). The content of Ag doped onto ZnO was designed by varying the AgNO3 content at 15 wt%, 50 wt%, and 100 wt% of ZnO. The results confirmed that the Ag was successfully doped onto ZnO. The silver particles were found to be in the 40-50 nm range, where the size of ZnO ranges between 300 and 400 nm, and the Ag attached to the ZnO particles. The XRD patterns of Ag-doped ZnO correspond to planes of hexagonal wurtzite ZnO structure and cubic metallic Ag. This Ag-doped ZnO was further added to NR latex foam. It was observed that Ag-doped ZnO did not affect the physical properties of the NR latex foam. However, it is clear that both the inhibition zone and percent reduction of bacteria (e.g., E. coli and S. aureus) were enhanced by the addition of Ag-doped ZnO. It showed a decrease in the amount of cell growth over contact time. The content of 100 wt% AgNO3 could reduce E. coli and S. aureus up to 64.72% and 58.90%, respectively, when samples were maintained for 24 h. This study provides a scientific understanding of how Ag-doped ZnO could facilitate the development of eventual rubber foam products based on the respective results.
Collapse
Affiliation(s)
- Abdulhakim Masa
- Rubber Engineering & Technology Program, International College, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nureeyah Jehsoh
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
| | - Sawitree Dueramae
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nabil Hayeemasae
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
- Correspondence:
| |
Collapse
|
7
|
Yi M, Xiong S, Zhang Y, Wan L, Chen F, Gong H, Yan S, Fang L, Wang Z. Antioxidating and reinforcing effect of polydopamine functionalized silica on natural rubber latex films. J Appl Polym Sci 2023. [DOI: 10.1002/app.53653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mingyuan Yi
- College of Materials Science and Engineering Hainan University Haikou China
| | - Siwen Xiong
- College of Materials Science and Engineering Hainan University Haikou China
| | - Yuxuan Zhang
- College of Materials Science and Engineering Hainan University Haikou China
| | - Lihong Wan
- College of Materials Science and Engineering Hainan University Haikou China
| | - Fanfan Chen
- College of Materials Science and Engineering Hainan University Haikou China
| | - He Gong
- College of Materials Science and Engineering Hainan University Haikou China
| | - Sitong Yan
- College of Materials Science and Engineering Hainan University Haikou China
| | - Lin Fang
- College of Materials Science and Engineering Hainan University Haikou China
| | - Zhifen Wang
- College of Materials Science and Engineering Hainan University Haikou China
| |
Collapse
|
8
|
Ameera Rosli N, Yeit Haan T, Mahmoudi E. Optimisation for the Synthesis of Uniformly Dispersed Antimicrobial Ag/GO Nanohybrid Latex Film. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|