1
|
Huo X, Zhao F, Xu Y, Liu Q, Wang W, Yang C, Su J. Fabulous combination therapy: Synergistic antibiotic inhibition of aquatic antibiotic-resistant bacteria via membrane damage and DNA binding by novel nano antimicrobial peptide C-I20. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136225. [PMID: 39442310 DOI: 10.1016/j.jhazmat.2024.136225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Aquatic microbiota' antibiotic resistance undermines traditional treatment efficacy, posing a severe threat to sustainable water environment. Our study addresses this challenge through a fantastic approach involving novel nano antimicrobial peptide C-I20 and antibiotics. Antibacterial tests demonstrated that C-I20 effectively combated both standard and aquatic pathogenic resistant strains. C-I20 killed drug-resistant bacteria by disrupting membrane structure and binding to DNA. C-I20 bound to DNA, forming precipitates susceptible to rapid degradation by trypsin and DNase I. When combined with chloramphenicol, florfenicol, ampicillin, or enrofloxacin, C-I20 exhibited remarkably higher inhibitory rates against bacteria compared to individual use of C-I20 or antibiotics alone. Continuous passage analysis revealed that co-administration of C-I20 with chloramphenicol, florfenicol, ampicillin, and enrofloxacin delays the emergence and progression of antibiotic resistance. This combination therapy was proved to be highly effective, notably reducing tissue bacterial loads and pathological changes. Evaluation in an Aeromonas hydrophila infection model showed the lowest morbidity rate and bacterial loading in the C-I20 combined with ampicillin group. Antimicrobial susceptibility analysis confirmed that C-I20 supplementation markedly suppresses ampicillin-induced intestinal resistant bacteria. In conclusion, C-I20 in conjunction with antibiotic therapy effectively inhibits infection and drug-resistant bacterial development, offering a promising strategy for managing drug-resistant bacteria in aquatic animals.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuezong Xu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Wang Z, Zhai W, Liu H. Megalobrama amblycephala IL-22 attenuates Aeromonas hydrophila induced inflammation, apoptosis and tissue injury by regulating the ROS/NLRP3 inflammasome axis. Front Immunol 2024; 15:1447431. [PMID: 39211040 PMCID: PMC11358693 DOI: 10.3389/fimmu.2024.1447431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Mammalian interleukin-22 (IL-22) attenuates organismal injury by inhibiting reactive oxygen species (ROS) and impeding the NLRP3 inflammasome activation. However, the role of fish IL-22 in this process remains unclear. We characterized MaIL-22, an IL-22 homolog in blunt snout bream (Megalobrama amblycephala). Despite its low sequence identity, it shares conserved structures and close evolutionary relationships with other teleost IL-22s. Furthermore, Aeromonas hydrophila (A. hydrophila) infection leads to tissue injury in M. amblycephala immune organs and concomitantly altered Mail-22 mRNA expression, suggesting that MaIL-22 was involved in the antimicrobial immune response. To explore MaIL-22's biological functions, we produced recombinant MaIL-22 (rMaIL-22) protein and demonstrated it significantly enhanced the survival of M. amblycephala post-A. hydrophila infection. To unravel its protective mechanisms, we explored the ROS/NLRP3 inflammasome axis and its downstream signaling responses. The results showed that rMaIL-22 treatment significantly elevated antioxidant enzyme (T-SOD, CAT and GSH-PX) activities to inhibit MDA activity and scavenge ROS in visceral tissues. Meanwhile, rMaIL-22 impeded the activation of NLRP3 inflammasome by suppressing NLRP3 protein and mRNA expression. This indicated that rMaIL-22 contributed to inhibit A. hydrophila-induced activation of the ROS/NLRP3 inflammasome axis. Consistent with these findings, rMaIL-22 treatment attenuated the expression of proinflammatory cytokines (il-1β, tnf-α and il-6) and proapoptotic genes (caspase-3 and caspase-8) while promoting antiapoptotic genes (bcl-2b and mcl-1a) expression, ultimately mitigating tissue injury in visceral tissues. In conclusion, our research underscores MaIL-22's key role in microbial immune regulation, offering insights for developing IL-22-targeted therapies and breeding programs.
Collapse
Affiliation(s)
- Zhensheng Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Wenya Zhai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
3
|
Huo X, Chang J, Zhang Q, Wang W, Wang P, Zhao F, He S, Yang C, Liu X, Liang X, Zhang Y, Su J. Nanopeptide CI20 remarkably enhances growth performance and disease resistances by improving the mucosal structure, antioxidant capacity, and immunity in mandarin fish (Siniperca chuatsi). Int J Biol Macromol 2023; 253:126935. [PMID: 37722638 DOI: 10.1016/j.ijbiomac.2023.126935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Soybean meal, excessively used in place of fish meal (FM) in aquaculture, has a detrimental impact on fish. In this study, the nanopeptide CI20, which was created by conjugating antimicrobial peptide gcIFN-20H and CMCS, were evaluated the feeding effect in mandarin fish (Siniperca chuatsi). Compared with the control group, 150 mg/kg C-I20-fed fish showed the second highest growth performance with no significant changes in body composition. C-I20-fed fish showed more goblet cells and thicker mucin after feeding. The 150 mg/kg CI20 diet boosted the antioxidant capacity, immunity, and digestive enzymes. After Aeromonas hydrophila and infection spleen and kidney necrosis virus infection, the survival rates in the 150 mg/kg CI20 group were highest. Meanwhile, many tissues in the 150 mg/kg CI20 group had significantly lower pathogen loads than the other groups. Treatment with 150 mg/kg CI20 was effective in increasing antioxidant capacity and immunity. The minimum tissue lesions were observed in the 150 mg/kg CI20 group. The goblet cell number and mucin thickness were significantly increased by CI20 treatment after infection. The study results herein showed that a reasonable dietary concentration of CI20 feed promoted growth performance and disease resistances in fish, suggesting a prospective nano antimicrobial peptide for the aquaculture.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiao Chang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiwei Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengxu Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan He
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufang Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
4
|
Zhao F, Huo X, Wang P, Liu Q, Yang C, Su J. The Combination of β-Glucan and Astragalus Polysaccharide Effectively Resists Nocardia seriolae Infection in Largemouth Bass ( Micropterus salmoides). Microorganisms 2023; 11:2529. [PMID: 37894188 PMCID: PMC10609034 DOI: 10.3390/microorganisms11102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Effectively treating and preventing outbreaks is crucial for improving the economic benefits of aquaculture. Therefore, utilizing immunostimulants, either alone or in combination, is regarded as a promising strategy. In this study, β-glucan + APS (200 mg/kg + 200 mg/kg), β-glucan (200 mg/kg), APS (200 mg/kg), enrofloxacin (15 mg/kg), and sulfadiazine (15 mg/kg) were added to feed to assess the effects against Nocardia seriolae infection in largemouth bass (Micropterus salmoides) within 14 days. The survival rates did not differ between the enrofloxacin group and the β-glucan + APS group, but both were significantly higher than that of the control group. Additionally, the enrofloxacin group and the β-glucan + APS group exhibited the lowest bacterial loads and tissue damage. Importantly, the β-glucan + APS treatment significantly improved serum enzyme activities (total superoxide dismutase, lysozyme, total protein) and the expression of immune genes (IL-1β, TNF-α, IFN-γ, IgM) compared to the other treatment groups. The enrofloxacin group showed similar efficacy to the β-glucan + APS group in combating N. seriolae infection, but N. seriolae in the enrofloxacin group developed drug resistance. In summary, the combined use of β-glucan and APS is a promising strategy for treating bacterial diseases, thereby contributing to the promotion of sustainable aquaculture development.
Collapse
Affiliation(s)
- Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
| | - Pengxu Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
5
|
Huo X, Zhang Q, Chang J, Yang G, He S, Yang C, Liang X, Zhang Y, Su J. Nanopeptide C-I20 as a novel feed additive effectively alleviates detrimental impacts of soybean meal on mandarin fish by improving the intestinal mucosal barrier. Front Immunol 2023; 14:1197767. [PMID: 37435065 PMCID: PMC10331600 DOI: 10.3389/fimmu.2023.1197767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Antibacterial peptide has been widely developed in cultivation industry as feed additives. However, its functions in reducing the detrimental impacts of soybean meal (SM) remain unknown. In this study, we prepared nano antibacterial peptide CMCS-gcIFN-20H (C-I20) with excellent sustained-release and anti-enzymolysis, and fed mandarin fish (Siniperca chuatsi) with a SM diet supplemented with different levels of C-I20 (320, 160, 80, 40, 0 mg/Kg) for 10 weeks. 160 mg/Kg C-I20 treatment significantly improved the final body weight, weight gain rate and crude protein content of mandarin fish and reduced feed conversion ratio. 160 mg/Kg C-I20-fed fish maintained appropriate goblet cells number and mucin thickness, as well as improved villus length, intestinal cross-sectional area. Based on these advantageous physiological changes, 160 mg/Kg C-I20 treatment effectively reduced multi-type tissue (liver, trunk kidney, head kidney and spleen) injury. The addition of C-I20 did not change the muscle composition and muscle amino acids composition. Interestingly, dietary 160 mg/Kg C-I20 supplementation prevented the reduction in myofiber diameter and change in muscle texture, and effectively increased polyunsaturated fatty acids (especially DHA + EPA) in muscle. In conclusion, dietary C-I20 in a reasonable concentration supplementation effectively alleviates the negative effects of SM by improving the intestinal mucosal barrier. The application of nanopeptide C-I20 is a prospectively novel strategy for promoting aquaculture development.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiwei Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiao Chang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gang Yang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Shan He
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xufang Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Ouyang A, Zhang M, Yuan G, Liu X, Su J. Chitooligosaccharide boosts the immunity of immunosuppressed blunt snout bream against bacterial infections. Int J Biol Macromol 2023; 242:124696. [PMID: 37224898 DOI: 10.1016/j.ijbiomac.2023.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
The immunosuppression hazard of fish brought by intensive aquaculture needs to be addressed urgently, while chitooligosaccharide (COS) shows the potential application in the prevention the immunosuppression of fish due to its superior biological properties. In this study, COS reversed the cortisol-induced immunosuppression of macrophages and improved the immune activity of macrophages in vitro, promoting the expression of inflammatory genes (TNF-α, IL-1β, iNOS) and NO production, and increasing the phagocytic activity of macrophages. In vivo, the oral COS was absorbed directly through the intestine, significantly ameliorating the innate immunity of cortisol-induced immunosuppression of blunt snout bream (Megalobrama amblycephala). Such as facilitated the gene expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and pattern recognition receptors (TLR4, MR) and potentiated bacterial clearance, resulting in an effective improvement in survival and tissue damage. Altogether, this study demonstrates that COS offers potential strategies in the application of immunosuppression prevention and control in fish.
Collapse
Affiliation(s)
- Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengwei Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| |
Collapse
|
7
|
Gan Z, Xu X, Tang S, Wen Q, Jin Y, Lu Y. Identification and functional characterization of protein kinase R (PKR) in amphibian Xenopus tropicalis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104648. [PMID: 36708793 DOI: 10.1016/j.dci.2023.104648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As one of interferon-induced serine/threonine kinases, the protein kinase R (PKR) plays vital roles in antiviral defense, and functional features of PKR remain largely unknown in amphibians, which suffer from ranaviral diseases in the last few decades. In this study, a PKR gene named Xt-PKR was characterized in the Western clawed frog (Xenopus tropicalis). Xt-PKR gene was widely expressed in different organs/tissues, and was rapidly induced by poly(I:C) in spleen, kidney, and liver. Intriguingly, Xt-PKR could be up-rugulated by the treatment of type I and type III interferons, and the transcript level of Xt-PKR induced by type I interferon was much higher than that of type III interferon. Moreover, overexpression of Xt-PKR can suppress the protein synthesis and ranavirus replication in vitro, and the residue lysine required for the translation inhibition activity in mammalian PKR is conserved in Xt-PKR. The present study represents the first characterization on the functions of amphibian PKR, and reveals considerable functional conservation of PKR in early tetrapods.
Collapse
Affiliation(s)
- Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xinlan Xu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Qingqing Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yong Jin
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
8
|
Characterization and evaluation of an oral vaccine via nano-carrier for surface immunogenic protein (Sip) delivery against Streptococcus agalactiae infection. Int J Biol Macromol 2023; 235:123770. [PMID: 36822292 DOI: 10.1016/j.ijbiomac.2023.123770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Streptococcus agalactiae causes systemic disease in a variety of wild and farmed fish, resulting in high levels of morbidity and mortality, as well as serious economic losses to the Nile tilapia aquaculture industry. The development of economic and applicable oral vaccines is therefore urgently needed for the sustainable development of Nile tilapia aquaculture. In this study, mesoporous silica nanoparticles (MSNs) were fabricated using sol-gel synthesis technology, and the antigens of surface immunogenic protein (Sip) was loaded into MSNs to develop a nanovaccine MSNs-Sip@HP55. The results showed that the prepared nanovaccine exhibited pH-controlled release, which could survive in the simulated gastric environment (pH 1.5), and release antigens in the simulated intestinal environment at pH 7.4. The nanovaccine could induce innate and adaptive immune responses in Nile tilapia. When the challenge doses were 1.5 × 106, 1.18 × 106, and 0.88 × 106 CFU/mL, the relative protection rates in immunized Nile tilapia were 63.33 %, 64.23 %, and 76.31 %, respectively. Taken together, the nanovaccine exhibited a high antigen utilization rate and was easily administered orally via feeding, which could protect Nile tilapia against challenge with S. agalactiae in large-scale farms. Oral vaccine based on MSNs carriers is a potentially promising strategy for the development of fish vaccines.
Collapse
|
9
|
Wang Z, Xu C, Zhang Y, Huo X, Su J. Dietary supplementation with nanoparticle CMCS-20a enhances the resistance to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 127:572-584. [PMID: 35798246 DOI: 10.1016/j.fsi.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Combination of antimicrobial proteins and nanomaterials provides a platform for the development of immunopotentiators. Oral administration of immunopotentiators can significantly enhance the immunity of organisms, which provides ideas for disease prevention. In this study, we confirmed that nanoparticles CMCS-20a can efficiently prevent grass carp reovirus (GCRV) infection. Firstly, we verified that CiCXCL20a is involved in the immune responses post GCRV challenge in vivo and alleviates the cell death post GCRV challenge in CIK cells. Then, we prepared nanoparticles CMCS-20a using carboxymethyl chitosan (CMCS) loaded with grass carp (Ctenopharyngodon idella) CXCL20a (CiCXCL20a). Meanwhile, we confirmed nanoparticles CMCS-20a can alleviate the degradation in intestine. Subsequently, we added it to the feed by low temperature vacuum drying method and high temperature spray drying method, respectively. Grass carp were oral administration for 28 days and challenged by GCRV. Low temperature vacuum drying group (LD-CMCS-20a) significantly improve grass carp survival rate, but not high temperature spray drying group (HD-CMCS-20a). To reveal the mechanisms, we investigated the serum biochemical indexes, intestinal mucus barrier, immune gene regulation and tissue damage. The complement component 3 content, lysozyme and total superoxide dismutase activities are highest in LD-CMCS-20a group. LD-CMCS-20a effectively attenuates the damage of GCRV to the number of intestinal villous goblet cells and mucin thickness. LD-CMCS-20a effectively regulates mRNA expressions of immune genes (IFN1, Mx2, Gig1 and IgM) in spleen and head kidney tissues. In addition, LD-CMCS-20a obviously alleviate tissue lesions and viral load in spleen. These results indicated that the nanoparticles CMCS-20a can enhance the disease resistance of fish by improving their immunity, which provides a new perspective for fish to prevent viral infections.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|