1
|
Cai Y, Zhang L, Cheng W, Xu W, Yuan K, Xiong R, Huang C. On-demand release of insulin using glucose-responsive chitosan-based three-compartment microspheres. Int J Biol Macromol 2024; 293:139351. [PMID: 39743064 DOI: 10.1016/j.ijbiomac.2024.139351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Various injectable glucose-responsive insulin release systems, including microspheres, have been developed to achieve insulin release for over a day. However, a major challenge is on-demand release insulin, which is closely related to the degradation rate of the delivery vehicle. Herein, chitosan-based three-compartment microspheres (TCMs) were fabricated using gas-shearing microfluidics. Glucose reacts with glucose oxidase (GOD) to generate gluconic acid, and chitosan degrades under acidic conditions to release insulin. The chitosan concentration in each compartment is adjusted to have gradient pH response ranges. Low, medium and high concentrations of insulin are encapsulated in low, medium and high concentration chitosan compartments respectively. The number of compartments involved in insulin release increases from one to three as blood glucose rises. Compared with single one-compartment microspheres (OCMs), TCMs maintain structural integrity and drug action for a longer duration. In vitro experiments have proven the on-demand release of insulin and excellent biocompatibility of TCMs. In chemically induced type 2 diabetes cell models, TCMs demonstrated long-term regulation of blood glucose levels for 20 to 35 h. This work presents a novel concept of constructing three compartments in microspheres to release insulin on-demand, and is highly attractive for research on insulin analogs and other related application.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Wenxuan Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangrui Yuan
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
3
|
Santinon C, de Vargas Brião G, da Costa TB, de Moura Junior CF, Beppu MM, Vieira MGA. Development of quaternized agar-based materials for the coronavirus inactivation. Int J Biol Macromol 2024; 278:134865. [PMID: 39163951 DOI: 10.1016/j.ijbiomac.2024.134865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
The COVID-19 pandemic has revealed weaknesses in healthcare systems and underscored the need for advanced antimicrobial materials. This study investigates the quaternization of agar, a seaweed-derived polysaccharide, and the development of electrospun membranes for air filtration in facemasks and biomedical applications. Using the betacoronavirus MHV-3 as a model, quaternized agar and membranes achieved a 90-99.99 % reduction in viral load, without associated cytotoxicity. The quaternization process reduced the viscosity of the solution from 1.19 ± 0.005 to 0.64 ± 0.005 Pa.s and consequently the electrospun fiber diameter ranged from 360 to 185 nm. Membranes synthesized based on polyvinyl alcohol and thermally cross-linked with citric acid exhibited lower water permeability. Avoiding organic solvents in the electrospinning technique ensured eco-friendly production. This approach offers a promising way to develop biocompatible and functional materials for healthcare and environmental applications.
Collapse
Affiliation(s)
- Caroline Santinon
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Giani de Vargas Brião
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Talles Barcelos da Costa
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Celso Fidelis de Moura Junior
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil
| | - Melissa Gurgel Adeodado Vieira
- Universidade Estadual de Campinas - School of Chemical Engineering, Albert Einstein Av, 500, 13083-852 Campinas, Brazil.
| |
Collapse
|
4
|
Feng X, Zhang Y, Zhou L, Chen Z, Cui X, Xiao H, Yang A, Minxie, Xiong R, Cheng W, Huang C. Development of sensitive biomass xylan-based carbon dots fluorescence sensor for quantification detection Cu 2+ in real water and soil. Int J Biol Macromol 2024; 278:135037. [PMID: 39217047 DOI: 10.1016/j.ijbiomac.2024.135037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Copper ions (Cu2+) pose significant risks to both human health and the environment as they tend to accumulate in soil and water. To address this issue, an innovative method using biomass-derived fluorescent carbon dots (D-CDs) synthesized via a hydrothermal process, with xylan serving as the carbon source was developed. D-CDs solution exhibited remarkable sensitivity and selectivity as a fluorescence sensor for Cu2+, boasting a low detection threshold of 0.64 μM. In order to facilitate real-time monitoring of Cu2+, solid-state fluorescent nanofiber membrane (NFD-CDs) through electrospinning was engineered. Additionally, D-CDs demonstrated successful Cu2+ detection in various real water samples, including those sourced from Xuanwu Lake, the Yangtze River, tap water, and bottled water, with accurate recovery rates observed. As a result, this research introduces a dual-mode analytical system for onsite detection of Cu2+ in real scenarios. By harnessing biomass-derived fluorescent CDs materials and solid-state fluorescence sensors, this approach offers a promising solution for addressing the challenges associated with Cu2+ contamination.
Collapse
Affiliation(s)
- Xiuyuan Feng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Lihao Zhou
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Zhiyuan Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoci Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, China
| | - Minxie
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210037, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
5
|
Miranda-Buendia E, González-Gómez GH, Maciel-Cerda A, González-Torres M. In Vitro Culture of Human Dermal Fibroblasts on Novel Electrospun Polylactic Acid Fiber Scaffolds Loaded with Encapsulated Polyepicatechin Physical Gels. Gels 2024; 10:601. [PMID: 39330203 PMCID: PMC11431576 DOI: 10.3390/gels10090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Polyepicatechin (PEC) in a hydrogel has previously shown promise in enhancing physiological properties and scaffold preparation. However, it remains unclear whether PEC-based fibers can be applied in skin tissue engineering (STE). This study aimed to synthesize and characterize electrospun PEC physical gels and polylactic acid (PLA) scaffolds (PLAloadedPECsub) for potential use as constructs with human dermal fibroblasts (HDFs). PEC was produced through enzymatic polymerization, as confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) demonstrated the feasibility of producing PLAloadedPECsub by electrospinning. The metabolic activity and viability of HDFs cocultured with the scaffolds indicate that PLAloadedPECsub is promising for the use of STE.
Collapse
Affiliation(s)
- Eliza Miranda-Buendia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.M.-B.); (G.H.G.-G.)
| | - Gertrudis H. González-Gómez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.M.-B.); (G.H.G.-G.)
| | - Alfredo Maciel-Cerda
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Maykel González-Torres
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra”, Ciudad de México 14389, Mexico
| |
Collapse
|
6
|
Maphanao P, Phothikul Y, Choodet C, Puangmali T, Katewongsa K, Pinlaor S, Thanan R, Yordpratum U, Sakonsinsiri C. Development and in vitro evaluation of ursolic acid-loaded poly(lactic- co-glycolic acid) nanoparticles in cholangiocarcinoma. RSC Adv 2024; 14:24828-24837. [PMID: 39119279 PMCID: PMC11306966 DOI: 10.1039/d4ra03637a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cholangiocarcinoma (CCA), an epithelial biliary tract malignancy, is a significant health concern in the Greater Mekong Subregion, particularly in northeastern Thailand. Prior to the development of advanced stages, CCA is typically asymptomatic, thereby limiting treatment options and chemotherapeutic effectiveness. Ursolic acid (UA), a triterpenoid derived from plants, was previously discovered to inhibit CCA cell growth through induction of apoptosis. Nevertheless, the therapeutic effectiveness of UA is limited by its poor solubility in water and low bioavailability; therefore, dimethyl sulfoxide (DMSO) is utilized as a solvent to treat UA with CCA cells. Enhancing cellular uptake and reducing toxicity, the utilization of polymeric nanoparticles (NPs) proves beneficial. In this study, UA-loaded PLGA nanoparticles (UA-PLGA NPs) were synthesized using nanoprecipitation and characterized through in silico formation analysis, average particle size, surface functional groups and ζ-potential measurements, electron microscopic imaging, drug loading efficiency and drug release studies, stability, hemo- and biocompatibility, cytotoxicity and cellular uptake assays. Molecular dynamics simulations validated the loading of UA into PLGA via hydrogen bonding. The synthesized UA-PLGA NPs had a spherical shape with an average size of 240 nm, a negative ζ-potential, good stability, great hemo- and bio-compatibility and an encapsulation efficiency of 98%. The NPs exhibited a characteristic of a simple diffusion-controlled Fickian process, as predicted by the Peppas-Sahlin drug release kinetic model. UA-PLGA NPs exhibited cytotoxic effects on KKU-213A and KKU-055 CCA cells even when dispersed in media without organic solvent, i.e., DMSO, highlighting the ability of PLGA NPs to overcome the poor water solubility of UA. Rhodamine 6G (R6G) was loaded into PLGA NPs using the same approach as UA-PLGA NPs, demonstrating effective delivery of the dye into CCA cells. These findings suggest that UA-PLGA NPs showed promise as a potential phytochemical delivery system for CCA treatment.
Collapse
Affiliation(s)
- Pornpattra Maphanao
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University Khon Kaen 40002 Thailand
| | - Yaowaret Phothikul
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Cherdpong Choodet
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Kanlaya Katewongsa
- Department of Biochemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University Khon Kaen 40002 Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University Khon Kaen 40002 Thailand
| | - Umaporn Yordpratum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
7
|
Lin X, Peng N, Huang P, Xiong Q, Lin H, Tang C, Tsauo C, Peng L. Potential of quaternized chitins in peri-implantitis treatment: In vitro evaluation of antibacterial, anti-inflammatory, and antioxidant properties. Int J Biol Macromol 2024; 272:132612. [PMID: 38795897 DOI: 10.1016/j.ijbiomac.2024.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Xiqiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Peijun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huishan Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chialing Tsauo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Zhou J, Chen Y, Liu Y, Huang T, Xing J, Ge R, Yu DG. Electrospun medicated gelatin/polycaprolactone Janus fibers for photothermal-chem combined therapy of liver cancer. Int J Biol Macromol 2024; 269:132113. [PMID: 38719010 DOI: 10.1016/j.ijbiomac.2024.132113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Liver cancer is a common cancer in the world, and core-shell nanoparticles as a commonly used combination therapy for local tumor ablation, have many shortcomings. In this study, photothermal Janus nanofibers were prepared using a electrospinning technology for tumor treatment, and the products were characterized and in vitro photothermal performance investigated. The micromorphology analysis showed that the photothermic agent CuS and electrospun fibers (loaded with CuS and anticancer drug dihydromyricetin) were successfully prepared, with diameters of 11.58 ± 0.27 μm and 1.19 ± 0.01 μm, respectively. Water contact angle and tensile test indicated that the fiber membranes has a certain hydrophilic adhesion and excellent mechanical strength. The fiber membranes has 808 nm near-infrared laser photothermal heating performance and photothermal stability, and it also has a strong response to the laser that penetrates biological tissue. In addition, in vitro cell culture and in vivo implantation study showed that the fiber membranes could kill HepG2 hepatocellular carcinoma cells combined with photothermal-chem and could be enriched in the implantation area, respectively. Hence, the Janus membranes may be a potential cancer treatment material.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yaoning Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Liu
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Hospital, Naval Medical University, Shanghai 200433, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Xing
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruiliang Ge
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Hospital, Naval Medical University, Shanghai 200433, China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
Liu J, Shi Y, Zhao Y, Liu Y, Yang X, Li K, Zhao W, Han J, Li J, Ge S. A Multifunctional Metal-Phenolic Nanocoating on Bone Implants for Enhanced Osseointegration via Early Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307269. [PMID: 38445899 PMCID: PMC11095205 DOI: 10.1002/advs.202307269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.
Collapse
Affiliation(s)
- Jin Liu
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Yilin Shi
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Yajun Zhao
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Yue Liu
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Xiaoru Yang
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Kai Li
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Weiwei Zhao
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Jianmin Han
- Central Laboratory,Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of StomatologyBeijing100081China
| | - Jianhua Li
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| | - Shaohua Ge
- Department of Biomaterial & Periodontology & ImplantologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinan250012China
| |
Collapse
|
10
|
Yan CH, Zhan YF, Chen H, Herman RA, Xu Y, Khurshid M, Gong LC, You S, Wang J. Coupling of gene regulation and carrier modification manipulates bacterial biofilms as robust living catalysts. BIORESOURCE TECHNOLOGY 2024; 399:130604. [PMID: 38499206 DOI: 10.1016/j.biortech.2024.130604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The biofilm of an engineered strain is limited by slow growth and low yield, resulting in an unsatisfactory ability to resist external stress and promote catalytic efficiency. Here, biofilms used as robust living catalysts were manipulated through dual functionalized gene regulation and carrier modification strategies. The results showed that gene overexpression regulates the autoinducer-2 activity, extracellular polymeric substance content and colony behavior of Escherichia coli, and the biofilm yield of csgD overexpressed strains increased by 79.35 % compared to that of the wild type strains (p < 0.05). In addition, the hydrophilicity of polyurethane fibres modified with potassium dichromate increased significantly, and biofilm adhesion increased by 105.80 %. Finally, the isoquercitrin yield in the catalytic reaction of the biofilm reinforced by the csgD overexpression strain and the modified carrier was 247.85 % higher than that of the untreated group. Overall, this study has developed engineered strains biofilm with special functions, providing possibilities for catalytic applications.
Collapse
Affiliation(s)
- Cheng-Hai Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yu-Fan Zhan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Huan Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Richard A Herman
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yan Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Lu-Chan Gong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China; Joint Laboratory of Synthetic Biology and Intelligent Biomanufacturing, Jiangsu University of Technology, Changzhou, Jiangsu 213001, PR China.
| |
Collapse
|
11
|
Tidim G, Guzel M, Soyer Y, Erel-Goktepe I. Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydr Polym 2024; 328:121710. [PMID: 38220322 DOI: 10.1016/j.carbpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
The emergence of antibiotic resistant bacteria and the ineffectiveness of routine treatments inspired development of alternatives to biocides for antibacterial applications. Bacteriophages are natural predators of bacteria and are promising alternatives to antibiotics. This study presents fabrication of a Salmonella enterica bacteriophage containing ultra-thin multilayer film composed of chitosan and alginate and demonstrates its potential as an antibacterial coating for food packaging applications. Chitosan/alginate film was prepared through layer-by-layer (LbL) self-assembly technique. A bacteriophage, which belongs to Siphoviridae morphotype (MET P1-001_43) and infects Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), was post-loaded into chitosan/alginate film. The LbL growth, stability, and surface morphology of chitosan/alginate film as well as phage deposition into multilayers were analysed through ellipsometry, QCM-D and AFM techniques. The bacteriophage containing multilayers showed antibacterial activity at pH 7.0. In contrast, anti-bacterial activity was not observed at acidic conditions. We showed that wrapping a Salmonella Enteritidis contaminated chicken piece with aluminium foil whose surface was modified with phage loaded chitosan/alginate multilayers decreased the number of colonies on the chicken meat, and it was as effective as treating the meat directly with phage solution.
Collapse
Affiliation(s)
- Gökçe Tidim
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Hitit University, 19030, Corum, Turkey
| | - Yesim Soyer
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Irem Erel-Goktepe
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Center of Excellence in Biomaterials and Tissue Eng. Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
12
|
Fang Y, Lin Y, Ou Y, Wang L, Chen J, Sun C, Wen Y, Liu H. Antibacterial and hemostatic chitin sponge directly constructed from Pleurotus Eryngii via top-down approach. Int J Biol Macromol 2024; 254:127902. [PMID: 37939752 DOI: 10.1016/j.ijbiomac.2023.127902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Chitin, the second most abundant polysaccharide on earth, possesses unique characteristics, including biosafety, biodegradability, and procoagulant activity, making it an attractive material for hemostasis. However, the conventional bottom-up construction of chitin-based materials is intricate and time-consuming. In this study, we have developed a top-down strategy to prepare a 3D porous chitin-based hemostatic sponge with exceptional hemostatic properties and antibacterial activity, directly from the spongy Pleurotus eryngii. The top-down method involves deproteinization, in situ quaternization, and tannin acid crosslinking. The obtained sponge has an interconnected microporous structure with high porosity (89.7 ± 3.2 %), endowing it with high water absorption (2047 ± 105 %) and rapid water-triggered shape-memory behavior (< 2 s). The sponge exhibits superior blood coagulant activity and outperforms standard medical gauze, gelatin sponge, and chitosan sponge in both topical artery and non-compressive liver puncture wound. In addition, the sponge exhibited significant antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. In summary, this study provides a straightforward and practical approach for constructing an antibacterial and hemostatic chitin sponge that could be a valuable option for treating bleeding wounds.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Yukai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yanjing Ou
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China.
| | - Caixia Sun
- Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yunxiang Wen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
13
|
Shangguan WJ, Mei XD, Chen HP, Hu S, Xu CL, Wang L, Lv KF, Huang QL, Xu HL, Cao LD. Biodegradable electrospun fibers as sustained-release carriers of insect pheromones for field trapping of Spodoptera litura (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2023; 79:4774-4783. [PMID: 37474484 DOI: 10.1002/ps.7673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Insect pheromones are highly effective and environmentally friendly, and are widely used in the monitoring and trapping of pests. However, many researchers have found that various factors such as ultraviolet light and temperature in the field environment can accelerate the volatilization of pheromones, thus affecting the actual control effect. In recent years, electrospinning technology has demonstrated remarkable potential in the preparation of sustained carriers. Moreover, the utilization of biodegradable materials in electrospinning presents a promising avenue for the advancement of eco-friendly carriers. RESULTS In this study, homogeneous and defect-free pheromone carriers were obtained by electrospinning using fully biodegradable polyhydroxybutyrate materials and pheromones of Spodoptera litura. The electrospun fibers with porous structure could continuously release pheromone (the longest can be ≤80 days). They also had low light transmission, hydrophobic protection. More importantly, the pheromone-loaded electrospun fiber carriers showed stable release and good trapping effect in the field. They could trap pests for at least 7 weeks in the field environment without other light stabilizers added. CONCLUSION Sustained-release carriers constructed by electrospinning and green materials could improve the efficacy of pheromones and ensure environmental friendliness, and provided a tool for the management of S. litura and other pests and sustainable development of agricultural. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Jie Shangguan
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang-Dong Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Ping Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Hu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Li Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Wang
- Pherobio Technology Co. Ltd., Beijing, China
| | - Kai-Fei Lv
- Pherobio Technology Co. Ltd., Beijing, China
| | - Qi-Liang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-Liang Xu
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Li-Dong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Zhang X, Yang X, Wu W, Jiang X, Dong Y, Yang S, Gou M. Improving the mechanical properties of 3D printed GelMA composite hydrogels by tannic acid. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2023; 2. [DOI: 10.1002/mba2.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe lack of advanced biomaterials is a major challenge in bio‐printing. Gelatin‐methacryloyl (GelMA) hydrogel, as one of the most commonly used biomaterials in 3D printing, has limited the applications of medicine because of its low mechanical properties. In this study, to enhance the mechanical strength of GelMA hydrogels, we prepared a composite hydrogel based on F127 diacrylate (F127DA) and GelMA, followed by lyophilization and tannic acid (TA) treatment. In this composite hydrogel, the F127DA could self‐assemble into nanomicelles as crosslinking centers for monomer polymerization, which provides additional energy dissipation in hydrogels due to the synergistic deformation of micelles and internal rearrangement of physical binding. After lyophilization of the composite hydrogel, the porous hydrogel was formed. The subsequent treatment of TA could diffuse into the inner of the hydrogel and react with the hydrogel via hydrogen bonds, resulting in the significant enhancement of mechanical properties. The maximum tensile deformation of the obtained hydrogel was about 11 times higher than that of GelMA. This work demonstrates a method to enhance the mechanical properties of 3D‐printed GelMA hydrogel with promising application in bioprinting.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Xiong Yang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Xuebing Jiang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yingchu Dong
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Shuai Yang
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Maling Gou
- State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
15
|
Da Silva J, Leal EC, Carvalho E, Silva EA. Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. Int J Mol Sci 2023; 24:9900. [PMID: 37373045 DOI: 10.3390/ijms24129900] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management.
Collapse
Affiliation(s)
- Jessica Da Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- PDBEB-Ph.D. Programme in Experimental Biology and Biomedicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
| | - Ermelindo C Leal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eduardo A Silva
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| |
Collapse
|
16
|
Du J, Dong H, Yang X, He Q. Asymmetric synthesis of a novel “dual-matrix” mixed matrix membrane (MMM) and its food applications. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
17
|
Mu R, Bu N, Yuan Y, Pang J, Ma C, Wang L. Development of chitosan/konjac glucomannan/tragacanth gum tri-layer food packaging films incorporated with tannic acid and ε-polylysine based on mussel-inspired strategy. Int J Biol Macromol 2023:125100. [PMID: 37236557 DOI: 10.1016/j.ijbiomac.2023.125100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Constructing biodegradable food packaging with good mechanics, gas barrier and antibacterial properties to maintain food quality is still challenge. In this work, mussel-inspired bio-interface emerged as a tool for constructing functional multilayer films. Konjac glucomannan (KGM) and tragacanth gum (TG) with physical entangled network are introduced in the core layer. Cationic polypeptide ε-polylysine (ε-PLL) and chitosan (CS) producing cationic-π interaction with adjacent aromatic residues in tannic acid (TA) are introduced in the two-sided outer layer. The triple-layer film mimics the mussel adhesive bio-interface, where cationic residues in outer layers interact with negatively charged TG in the core layer. Furthermore, a series of physical tests showed excellent performance of triple-layer film with great mechanical properties (tensile strength (TS): 21.4 MPa, elongation at break (EAB): 7.9 %), UV-shielding (almost 0 % UV transmittance), thermal stability, water, and oxygen barrier (oxygen permeability (OP): 1.14 × 10-3 g/m s Pa and water vapor permeability (WVP): 2.15 g mm/m2 day kPa). In addition, the triple-layer film demonstrated advanced degradability, antimicrobial functions, and presented good moisture-proof performance for crackers, which can be potentially applied as dry food packaging.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Ji C, Zhang C, Xu Z, Chen Y, Gan Y, Zhou M, Li L, Duan Q, Huang T, Lin J. Mussel-inspired HA@TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front Bioeng Biotechnol 2023; 11:1193605. [PMID: 37229495 PMCID: PMC10203166 DOI: 10.3389/fbioe.2023.1193605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Bacterial infection is a major challenge that could threaten the patient's life in repairing bone defects with implant materials. Developing functional scaffolds with an intelligent antibacterial function that can be used for bone repair is very important. We constructed a drug delivery (HA@TA-CS/SA) scaffold with curcumin-loaded dendritic mesoporous organic silica nanoparticles (DMON@Cur) via 3D printing for antibacterial bone repair. Inspired by the adhesion mechanism of mussels, the HA@TA-CS/SA scaffold of hydroxyapatite (HA) and chitosan (CS) is bridged by tannic acid (TA), which in turn binds sodium alginate (SA) using electrostatic interactions. The results showed that the HA@TA-CS/SA composite scaffold had better mechanical properties compared with recent literature data, reaching 68.09 MPa. It displayed excellent degradation and mineralization capabilities with strong biocompatibility in vitro. Furthermore, the antibacterial test results indicated that the curcumin-loaded scaffold inhibited S.aureus and E.coli with 99.99% and 96.56% effectiveness, respectively. These findings show that 3D printed curcumin-loaded HA@TA-CS/SA scaffold has considerable promise for bone tissue engineering.
Collapse
Affiliation(s)
- Cheng Ji
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | | | - Zeya Xu
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Yan Chen
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Yanming Gan
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | - Minghui Zhou
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | - Lan Li
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Qinying Duan
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | - Tingting Huang
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Jinxin Lin
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
19
|
Yang L, Li C, Wang X, Zhang X, Li Y, Liu S, Li J. Electroactive nanofibrous membrane with temperature monitoring for wound healing. RSC Adv 2023; 13:14224-14235. [PMID: 37179989 PMCID: PMC10170354 DOI: 10.1039/d3ra01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Developing functional dressings for promoting cellular activities and monitoring the healing progress is receiving increasingly widespread attention. In this study, Ag/Zn electrodes were deposited on the surface of a polylactic acid (PLA) nanofibrous membrane which can mimic the extracellular matrix. When wetted by wound exudate, the Ag/Zn electrodes could generate an electric stimulation (ES), promoting the migration of fibroblasts that heal wounds. Moreover, the Ag/Zn@PLA dressing showed excellent antibacterial activity against E. coli (95%) and S. aureus (97%). The study found that the electrostatic (ES) effect and the release of metal ions mainly contribute to the wound healing properties of Ag/Zn@PLA. In vivo mouse models demonstrated that Ag/Zn@PLA could promote wound healing by improving re-epithelialization, collagen deposition, and neovascularization. Additionally, the integrated sensor within the Ag/Zn@PLA dressing can monitor the wound site's temperature in real-time, providing timely information on wound inflammatory reactions. Overall, this work suggests that combining electroactive therapy and wound temperature monitoring may provide a new strategy for designing functional wound dressings.
Collapse
Affiliation(s)
- Liguo Yang
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Chenglin Li
- Department of Biochemistry and Microbiology, Qingdao University Medical College, Qingdao University Qingdao 266003 China
| | - Xuefang Wang
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Xiangyan Zhang
- Department of Pathology, Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao 266003 China
| | - Yongxin Li
- Department of Pathology, Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao 266003 China
| | - Shangpeng Liu
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Jiwei Li
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
- Shandong Center for Engineered Nonwovens Qingdao 266071 China
| |
Collapse
|
20
|
Doğan D, Karaduman FR, Horzum N, Metin AÜ. Boron nitride decorated poly(vinyl alcohol)/poly(acrylic acid) composite nanofibers: A promising material for biomedical applications. J Mech Behav Biomed Mater 2023; 141:105773. [PMID: 36934687 DOI: 10.1016/j.jmbbm.2023.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
In this study, polyvinyl alcohol (PVA) and polyacrylic acid (PAA) nanofibers loaded with boron nitride nanoparticles (mBN) were fabricated by using electrospinning and crosslinked by heat treatment. The physical, chemical, and mechanical properties, hydrophilic behavior, and degradability of composite nanofibers were evaluated. The mechanical properties such as elastic modulus, elongation percentage at the break, and mechanical strength of PVA/PAA nanofibers improved with mBN loading. The thermal conductivity of composite nanofibers reached 0.12 W/m·K at mBN content of 1.0 wt% due to the continuous heat conduction pathways of mBN. In the meantime, while there was no cytotoxicity recorded for both L929 and HUVEC cell lines for all composite nanofibers, the antimicrobial efficiency improved with the incorporation of mBN compared with PVA/PAA and recorded as 68.8% and 75.1% for Escherichia coli and Staphylococcus aureus, respectively. On this basis, the present work proposes a promising biomaterial for biomedical applications such as dual drug delivery, particularly including both hydrophobic and hydrophilic drugs or wound dressing.
Collapse
Affiliation(s)
- Deniz Doğan
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey
| | - F Rabia Karaduman
- Graduate School of Natural and Applied Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Ayşegül Ülkü Metin
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
21
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Layer-by-layer assembly of peptides-decorated coaxial nanofibrous membranes with antibiofilm and visual pH sensing capability. Colloids Surf B Biointerfaces 2022; 220:112860. [PMID: 36174488 DOI: 10.1016/j.colsurfb.2022.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 12/31/2022]
Abstract
The countermeasure of biofilm infections leaving a challenge due to a dense antibiotic-resistant barrier formed by extracellular polymeric substances (EPS). Although antibiotic alternative methods have been developed to combat biofilms, develop effective remedies coupling with timely feedback about the therapeutic effect are still in urgent demand. To this end, we construct an intelligent coaxial electrospun nanofibrous membranes (ENMs) that integrated therapy of infections and in situ visualized diagnosis. Specifically, pH-sensitive alizarin was incorporated into polyamide 6 to subtly consist core layer and curcumin (Cur) was formulated with degradable polyglycolic acid (PGA) to composed of the shell layer. The shell layer can gradually release curcumin along with the degradation of PGA. Moreover, epsilon-poly-L-lysine (ε-PL) was deposited on coaxial ENMs via layer-by-layer self-assembly technique to disturb EPS integrity. As a result of the treatment, two different Gram-positive and Gram-negative bacteria displayed increased susceptibility to the drug hybrids. The degradation of PGA would trigger a sustained release of Cur and ε-PL, and once the core layer exposing, the acidic microenvironment of Staphylococcus aureus and Pseudomonas aeruginosa biofilm could be detected in situ by emerging visualized color change to timely feedback. Besides, the ENMs showed good biocompatibility. It paves a feasible and effective avenue for constructing a facile treatment and diagnosis platform for wound biofilm infections.
Collapse
|
23
|
Dubashynskaya NV, Skorik YA. Patches as Polymeric Systems for Improved Delivery of Topical Corticosteroids: Advances and Future Perspectives. Int J Mol Sci 2022; 23:12980. [PMID: 36361769 PMCID: PMC9657685 DOI: 10.3390/ijms232112980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/25/2023] Open
Abstract
Mucoadhesive polymer patches are a promising alternative for prolonged and controlled delivery of topical corticosteroids (CS) to improve their biopharmaceutical properties (mainly increasing local bioavailability and reducing systemic toxicity). The main biopharmaceutical advantages of patches compared to traditional oral dosage forms are their excellent bioadhesive properties and their increased drug residence time, modified and unidirectional drug release, improved local bioavailability and safety profile, additional pain receptor protection, and patient friendliness. This review describes the main approaches that can be used for the pharmaceutical R&D of oromucosal patches with improved physicochemical, mechanical, and pharmacological properties. The review mainly focuses on ways to increase the bioadhesion of oromucosal patches and to modify drug release, as well as ways to improve local bioavailability and safety by developing unidirectional -release poly-layer patches. Various techniques for obtaining patches and their influence on the structure and properties of the resulting dosage forms are also presented.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia
| |
Collapse
|
24
|
Hassanpouraghdam Y, Pooresmaeil M, Namazi H. In-vitro evaluation of the 5-fluorouracil loaded GQDs@Bio-MOF capped with starch biopolymer for improved colon-specific delivery. Int J Biol Macromol 2022; 221:256-267. [PMID: 36067851 DOI: 10.1016/j.ijbiomac.2022.08.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Herein, for the first time, the photoluminescent graphene quantum dots@Bio-metal organic framework (GQDs@Bio-MOF) nanohybrid was prepared. BET analysis obtained the average pore diameter of GQDs@Bio-MOF about 11.97 nm. The existence of nanoscale porosity in GQDs@Bio-MOF displays its suitability for 5-Fu loading owing to the smaller size of 5-Fu. 5-Fu entrapment efficiency and loading capacity were found to be ~42.04 % and ~4.20 %, respectively (5-Fu@GQDs@Bio-MOF). The 5-Fu@GQDs@Bio-MOF was capped with starch biopolymer (St@5-Fu@GQDs@Bio-MOF), fabricated sample displayed 4.67 for pHPZC. SEM analysis displayed that the St@5-Fu@GQDs@Bio-MOF microspheres have a spherical shape with a diameter of ~2 μm. The in vitro drug release assay displayed better release behavior for St@5-Fu@GQDs@Bio-MOF than 5-Fu@GQDs@Bio-MOF, releasing about 62.3 % of the entrapped 5-Fu within 96 h of incubation. The 5-Fu release showed the best fitting with the Higuchi model with R2 0.9884. The in vitro cytotoxicity screening outcomes displayed that the St@GQDs@Bio-MOF is a promising biocompatible carrier, with cell viability of higher than 84 %. Accumulation of the results revealed that the St@5-Fu@GQDs@Bio-MOF is a new system with advantages of sustained drug release and biocompatibility that are the main criteria for each newly designed anticancer drug carrier.
Collapse
Affiliation(s)
- Yashar Hassanpouraghdam
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
25
|
Su Y, Guo C, Chen Q, Guo H, Wang J, Kaihang M, Chen D. Novel multifunctional bionanoparticles modified with sialic acid for stroke treatment. Int J Biol Macromol 2022; 214:278-289. [PMID: 35716787 DOI: 10.1016/j.ijbiomac.2022.06.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022]
Abstract
Oxidative stress and inflammation are two key pathophysiological mechanisms that lead to neuronal apoptosis and brain damage following ischemia/reperfusion (I/R) injury. Because of their complex pathological mechanisms and the presence of the blood-brain barrier, the treatment of I/R is severely limited. Inspired by the fact that Macrophage membranes (MM) can cross the blood-brain barrier, we have developed a new multifunctional bionic particle (MSAOR@Cur). The modification of Sialic acid (SA) on the surface of Angelica polysaccharides (APS), the attachment of Resveratrol (Res) using the ROS-responsive bond oxalate bond as a linker arm, constitutes amphiphilic nanoparticles with an inner core encapsulated with curcumin (SAOR@Cur), and finally the use of MM camouflage to integrate the neuroprotection of APS, the free radical scavenging of Res, and the anti-inflammation of curcumin (Cur) in one strategy. Interestingly, the experimental results show that MSAOR@Cur can successfully deliver curcumin to the area of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China.
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, PR China; Weifang Institute of Technology, Weifang 262500, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, PR China; Weifang Institute of Technology, Weifang 262500, PR China
| | - Jinqiu Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Mu Kaihang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
26
|
Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. J Colloid Interface Sci 2022; 626:768-774. [PMID: 35820212 DOI: 10.1016/j.jcis.2022.06.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
Abstract
Biocatalytic reaction networks in eukaryotic cells is realized by the immobilized and compartmental multi-enzymatic system. Inspired by the spatial localization of natural cells, multiple enzymes were confined within the multicompartmental microcapsules, which were created using a gas-shearing method coupled with surface-triggered in situ gelation strategy. Heterogeneous multicompartmental (two-, three-, four-, six-, or eight-faced) core particles, due to their capacity for positional assembly, were encapsuled in alginate hydrogel shells. The generated microcapsules integrate logic network to access complex digital design through a three-step convergent enzymatic cascade reaction as a model, and the capsules with high stability, recyclability and cytocompatibility are ideal enzymatic reactor systems to be used for biomimetic biocatalysis process.
Collapse
|
27
|
Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022; 8:gels8060329. [PMID: 35735673 PMCID: PMC9222824 DOI: 10.3390/gels8060329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
The dressings containing nanoparticles of metals and metal oxides are promising types of materials for wound repair. In such dressings, biocompatible and nontoxic hydrophilic polymers are used as a matrix. In the present review, we take a look at the anti-microbial effect of the nanoparticle-modified wound dressings against various microorganisms and evaluate their healing action. A detailed analysis of 31 sources published in 2021 and 2022 was performed. Furthermore, a trend for development of modern antibacterial wound-healing nanomaterials was shown as exemplified in publications starting from 2018. The review may be helpful for researchers working in the areas of biotechnology, medicine, epidemiology, material science and other fields aimed at the improvement of the quality of life.
Collapse
|
28
|
Xu H, Zhang F, Wang M, Lv H, Yu DG, Liu X, Shen H. Electrospun hierarchical structural films for effective wound healing. BIOMATERIALS ADVANCES 2022; 136:212795. [PMID: 35929294 DOI: 10.1016/j.bioadv.2022.212795] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Patients with acute and chronic wounds have been increasing around the world, and the demand for wound treatment and care is also increasing. Therefore, a new nanofiber wound dressing should be prepared to promote the wound healing process. In this study, we report the design and preparation of a hierarchical structural film wound dressing. The top layer is composed of profoundly hydrophobic polycaprolactone (PCL), which is used to resist the adhesion of external microorganisms. The bottom layer is made of hydrophilic gelatin, which provides a moist healing environment for the wound. The middle layer is composed of hydrophilic Janus nanofibers prepared with the latest side-by-side electrospinning technique. Gelatin and PCL are used as polymer matrices loaded with the ciprofloxacin (CIP) drug and zinc oxide nanoparticles (n-ZnO), respectively. Test results show that the dressing has outstanding surface wettability, excellent mechanical properties, and rapid drug release. The presence of biologically active ingredients provides antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Finally, the results of wound healing in mice show accelerated collagen deposition, promotion of angiogenesis, and complete wound healing within 14 days. Overall, this hierarchical structural dressing has a strong potential for accelerating wound healing.
Collapse
Affiliation(s)
- Haixia Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feiyang Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Menglong Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - He Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China.
| | - Xinkuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Orthopaedics, Jinjiang Municipal Hospital, Fujian 362200, China.
| |
Collapse
|