1
|
Shamaeizadeh N, Mirian M. MicroRNA-219 in the central nervous system: a potential theranostic approach. Res Pharm Sci 2024; 19:634-655. [PMID: 39911893 PMCID: PMC11792714 DOI: 10.4103/rps.rps_163_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the recent therapeutic advances in neurological disorders, curative therapy remains a serious challenge in many cases. Even though recent years have witnessed the development of gene therapy from among the different therapeutic approaches affecting pathophysiological mechanisms, intriguing aspects exist regarding the effectiveness, safety, and mechanism of action of gene therapies. Micro ribonucleic acid (microRNA-miRNA), as a fundamental gene regulator, regulates messenger ribonucleic acid (mRNA) by directly binding through the 3'-untranslated region (3'-UTR). MicroRNA-219 is a specific brain-enriched miRNA associated with neurodevelopmental disorders that play crucial roles in the differentiation of oligodendrocyte progenitorcells, promotion of oligodendrocyte maturation, remyelination, and cognitive functions to the extent that it can be considered a potential therapeutic option for demyelination in multiple sclerosis and spinal cord injury and reverse chronic inflammation pains. Additionally, miR-219 regulates the circadian clock, influencing the duration of the circadian clock period. This regulation can impact mood stability and is associated with phase fluctuations in bipolar patients. Furthermore, miR-219 also plays a role in modulating tau toxicity, which is relevant to the pathophysiology of Alzheimer's disease and schizophrenia. Finally, it reportedly has protective effects against seizures and Parkinson's disease, as well as neoplasms, by inhibiting proliferation, suppressing invasion, and inducing cell death in tumor cells. Exploring the miR-219 molecular pathways and their therapeutic effects on central nervous system disorders and the mechanisms involved, the present review study aims to illustrate how this information may change the future of gene therapy.
Collapse
Affiliation(s)
- Nahal Shamaeizadeh
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
2
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Lactoferrin, chitosan double-coated oleosomes loaded with clobetasol propionate for remyelination in multiple sclerosis: Physicochemical characterization and in-vivo assessment in a cuprizone-induced demyelination model. Int J Biol Macromol 2024; 277:134144. [PMID: 39053824 DOI: 10.1016/j.ijbiomac.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 μM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Karthik S, Mohan S, Magesh I, Bharathy A, Kolipaka R, Ganesamoorthi S, Sathiya K, Shanmugavadivu A, Gurunathan R, Selvamurugan N. Chitosan nanocarriers for non-coding RNA therapeutics: A review. Int J Biol Macromol 2024; 263:130361. [PMID: 38395284 DOI: 10.1016/j.ijbiomac.2024.130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Non-coding RNA (ncRNA)-based therapies entail delivering ncRNAs to cells to regulate gene expression and produce proteins that combat infections, cancer, neurological diseases, and bone abnormalities. Nevertheless, the therapeutic potential of these ncRNAs has been limited due to the difficulties in delivering them to specific cellular targets within the body. Chitosan (CS), a biocompatible cationic polymer, interacts with negatively charged RNA molecules to form stable complexes. It is a promising biomaterial to develop nanocarriers for ncRNA delivery, overcoming several disadvantages of traditional delivery systems. CS-based nanocarriers can protect ncRNAs from degradation and target-specific delivery by surface modifications and intracellular release profiles over an extended period. This review briefly summarizes the recent developments in CS nanocarriers' synthesis and design considerations and their applications in ncRNA therapeutics for treating various diseases. We also discuss the challenges and limitations of CS-based nanocarriers for ncRNA therapeutics and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- S Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Raghav Gurunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Nag S, Mitra O, Tripathi G, Samanta S, Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S, Rustagi S, Adhikari S, Mohanty A, León‐Figueroa DA, Rodriguez‐Morales AJ, Barboza JJ, Sah R. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e1121. [PMID: 38156400 PMCID: PMC10755504 DOI: 10.1002/iid3.1121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Oishi Mitra
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Garima Tripathi
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Souvik Samanta
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Bikramjit Bhattacharya
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Department of Applied MicrobiologyVellore Institute of Technology (VIT)Tamil NaduIndia
| | - Priti Chandane
- Department of BiochemistrySchool of Life SciencesUniversity of HyderabadHyderabadTelanganaIndia
| | - Sourav Mohanto
- Department of PharmaceuticsYenepoya Pharmacy College & Research CentreYenepoya (Deemed to be University)MangaluruKarnatakaIndia
| | - Vino Sundararajan
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Sumira Malik
- Amity Institute of BiotechnologyAmity University JharkhandRanchiJharkhandIndia
- University Centre for Research and DevelopmentUniversity of Biotechnology, Chandigarh University, GharuanMohaliPunjab
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | | | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | | | - Alfonso J. Rodriguez‐Morales
- Clinical Epidemiology and Biostatistics, School of MedicineUniversidad Científica del SurLimaPeru
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityBeirutLebanon
| | | | - Ranjit Sah
- Department of Clinical MicrobiologyInstitute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
5
|
Shirani-Bidabadi S, Mirian M, Varshosaz J, Tavazohi N, Sadeghi HMM, Shariati L. Gene network analysis of oxaliplatin-resistant colorectal cancer to target a crucial gene using chitosan/hyaluronic acid/protamine polyplexes containing CRISPR-Cas9. Biochim Biophys Acta Gen Subj 2023; 1867:130385. [PMID: 37230419 DOI: 10.1016/j.bbagen.2023.130385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Colorectal cancer (CRC) treatment is dramatically hampered by resistance to oxaliplatin alone or in the combination of irinotecan or 5-fluorouracil and leucovorin. This study aims to design and assess Chitosan/Hyaluronic Acid/Protamine sulfate (CS/HA/PS) polyplexes loaded with CRISPR plasmid for targeting a key gene in cancer drug resistance. Here, recent findings were considered to validate oxaliplatin-resistant CRC-related genes and systems biology approaches employed to detect the critical gene. The polyplexes were characterized according to particle size, zeta potential, and stability. Moreover, carrier toxicity and transfection efficiency were assessed on oxaliplatin-resistant HT-29 cells. The post-transfection evaluations were performed to confirm gene disruption-mediated CRISPR. Eventually, excision cross complementation group 1(ERCC1), a crucial member of the nucleotide excision repair pathway, was selected to be targeted using CRISPR/Cas9 to reverse oxaliplatin resistance in HT-29 cells. CS/HA/PS polyplexes containing CRISPR/Cas9 plasmid exhibited negligible toxicity and comparable transfection efficiency with Lipofectamine™. Following the efficient gene delivery, sequences in CRISPR/Cas9 target sites were altered, ERCC1 was downregulated, and drug sensitivity was successfully restored in oxaliplatin-resistant cells. Findings indicate that CS/HA/PS/CRISPR polyplexes provide a potential strategy for delivering cargo and targeting oxaliplatin resistance-related gene to manipulate drug resistance as a rising concern in cancer therapeutic approaches.
Collapse
Affiliation(s)
- Shiva Shirani-Bidabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Nazita Tavazohi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| |
Collapse
|
6
|
Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1849. [PMID: 37514036 PMCID: PMC10383118 DOI: 10.3390/pharmaceutics15071849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.
Collapse
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
7
|
Tryphena KP, Singh G, Jain N, Famta P, Srivastava S, Singh SB, Khatri DK. Integration of miRNA's Theranostic Potential with Nanotechnology: Promises and Challenges for Parkinson's Disease Therapeutics. Mech Ageing Dev 2023; 211:111800. [PMID: 36958539 DOI: 10.1016/j.mad.2023.111800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Despite the wide research going on in Parkinson's disease (PD), the burden of PD still remains high and continues to increase. The current drugs available for the treatment of PD are only aimed at symptomatic control. Hence, research is mainly focused on identifying the novel therapeutic targets that can be effectively targeted in order to slow down or culminate the disease progression. Recently the role of microRNAs (miRNAs) in the regulation of various pathological mechanisms of PD has been thoroughly explored and many of them were found to be dysregulated in the biological samples of PD patients. These miRNAs can be used as diagnostic markers and novel therapeutic options to manage PD. The delivery of miRNAs to the target site in brain is a challenging job owing to their nature of degradability by endonucleases as well as poor blood brain barrier (BBB) permeability. Nanoparticles appear to be the best solution to effectively encase the miRNA in their core as well as cross the BBB to deliver them into brain. Functionalisation of these nanoparticles further enhances the site-specific delivery.
Collapse
Affiliation(s)
- Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Naitik Jain
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Paras Famta
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Saurabh Srivastava
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| |
Collapse
|
8
|
Shirani-Bidabadi S, Tabatabaee A, Tavazohi N, Hariri A, Aref AR, Zarrabi A, Casarcia N, Bishayee A, Mirian M. CRISPR technology: A versatile tool to model, screen, and reverse drug resistance in cancer. Eur J Cell Biol 2023; 102:151299. [PMID: 36809688 DOI: 10.1016/j.ejcb.2023.151299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Drug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR's role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.
Collapse
Affiliation(s)
- Shiva Shirani-Bidabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aliye Tabatabaee
- Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nazita Tavazohi
- Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Sciences, Xsphera Biosciences Inc., Boston, MA 02215, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| |
Collapse
|
9
|
Apolipoprotein C3 facilitates internalization of cationic lipid nanoparticles into bone marrow-derived mouse mast cells. Sci Rep 2023; 13:431. [PMID: 36624108 PMCID: PMC9828384 DOI: 10.1038/s41598-022-25737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Mast cells (MCs), are hematopoetically-derived secretory immune cells that release preformed as well as de novo synthesized inflammatory mediators in response to activation by several stimuli. Based on their role in inflammatory responses, particularly in the lung and skin, MCs provide an effective target for anti-inflammatory therapeutic strategies. Drug-delivery of lipophilic payloads to MCs can be challenging due to their functionally distinct intracellular structures. In the present study, pH-sensitive cationic lipid-based nanoparticles (LNPs) composed of DODMA, DODAP or DOTAP lipids that encapsulated a GFP or eGFP plasmid were constructed using non-turbulent microfluidic mixing. This approach achieved up to 75-92% encapsulation efficiency. Dynamic light scattering revealed a uniformly sized and homogeneous dispersion of LNPs. To promote cellular internalization, LNPs were complexed with apolipoproteins, amphipathic proteins capable of binding lipids and facilitating their transport into cells. Cryo-TEM analysis showed that LNP structure was differentially modified when associated with different types of apolipoproteins. LNP preparations made up of DODMA or DODMA, DODAP and DOTAP lipids were coated with seven apolipoproteins (Apo A1, B, C3, D, E2, E4 and H). Differentiated bone-marrow derived mouse mast cells (BMMCs) were exposed to apolipoprotein-LNP and internalization was measured using flow cytometry. Out of all the apolipoproteins tested, ApoC3 most efficiently facilitated cellular internalization of the LNP into BMMCs as determined by GFP fluorescence using flow cytometry. These effects were confirmed in a less differentiated but also interleukin-3-dependent model of mouse mast cells, MC/9. ApoC3-LNP enhanced internalization by BMMC in a concentration-dependent manner and this was significantly increased when BMMC were pre-treated with inhibitors of actin polymerization, suggesting a dependence on intracellular shuttling. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) decreased ApoC3-LNP internalization and reduced the expression of apolipoprotein E receptor 2 (ApoER2), suggesting that ApoC3-LNP binding to ApoER2 may be responsible for its enhanced internalization. Furthermore, ApoC3 fails to facilitate internalization of LNPs in Lrp8-/- KO BMMC that do not express ApoER2 on their cell surface. Altogether, our studies reveal an important role of ApoC3 in facilitating internalization of cationic LNPs into MCs.
Collapse
|
10
|
Aliomrani M, Rezaei M, Dinani MS, Mesripour A. Effects of Asparagus officinalis on immune system mediated EAE model of multiple sclerosis. Toxicol Res (Camb) 2022; 11:931-939. [PMID: 36569489 PMCID: PMC9773056 DOI: 10.1093/toxres/tfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022] Open
Abstract
Background About 5 to 10 percent of the population in developed countries are affected by autoimmune diseases. One of the most important autoimmune disease with high prevalence rate is Multiple sclerosis in which there is currently no definitive cure for it, and most medications such as interferons are used only to limit the disease. The present study aims to investigate the effect of using Asparagus Officinalis fractions in an immune system mediated model of multiple sclerosis. Material and Methods Fractionation was performed by maceration using n-hexane, chloroform, chloroform-methanol (9: 1), n-Butanol and methanol solvents from aerial parts of Asparagus Officinalis. Thin layer chromatography, NMR and phenolic component measurement were done and two fractions were selected for checking in MS induced in vivo model. Results It was observed that chloroform-methanolic and N-Butanol fractions had higher content of saponin in comparison of other extracts. Also, it was showed that the methanolic and n-Butanol extracts contains the highestportion of glycosylic steroid saponins in comparison to other fractions. Regarding experimental autoimmune encephalomyelitis (EAE) score, Butanolic and methanolic fractions with doses higher that 100mg/kg showed a potent supportive effects as long as locomotor activity protection even in lower dose in comparison to phosphate buffered saline (PBS) group. Conclusion Considering the proved different effects of saponin compounds on the immune system we observed that those fractions altered the circulatory peripheral blood cells and also remit the clinical signs after EAE induction along with enhanced myelin sheath content in the median region of corpus callusom. It could be inferred that this fractions are promising candidates for further investigation as dose-dependent immune system regulating compounds in multiple sclerosis patients.
Collapse
Affiliation(s)
- Mehdi Aliomrani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| | - Mina Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| | - Azadeh Mesripour
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| |
Collapse
|
11
|
Trideva Sastri K, Vishal Gupta N, Kannan A, Balamuralidhara V, Ramkishan A. Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discov Today 2022; 27:103357. [PMID: 36115632 DOI: 10.1016/j.drudis.2022.103357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder attributed to neurodegeneration and demyelination, resulting in neurological impairment. miRNA has a significant role in biological processes in MS. In this review, we focus on the feasibility of delivering miRNAs through nanoformulations for managing MS. We provide a brief discussion of miRNA synthesis and evidence for miRNA dysregulation in MS. We also highlight formulation strategies and resulting technologies for the effective delivery of miRNAs through nanocarrier systems for achieving high therapeutic benefits.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - V Balamuralidhara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| |
Collapse
|
12
|
Genedy HH, Delair T, Montembault A. Chitosan Based MicroRNA Nanocarriers. Pharmaceuticals (Basel) 2022; 15:ph15091036. [PMID: 36145257 PMCID: PMC9500875 DOI: 10.3390/ph15091036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vectorization of microRNAs has shown to be a smart approach for their potential delivery to treat many diseases (i.e., cancer, osteopathy, vascular, and infectious diseases). However, there are barriers to genetic in vivo delivery regarding stability, targeting, specificity, and internalization. Polymeric nanoparticles can be very promising candidates to overcome these challenges. One of the most suitable polymers for this purpose is chitosan. Chitosan (CS), a biodegradable biocompatible natural polysaccharide, has always been of interest for drug and gene delivery. Being cationic, chitosan can easily form particles with anionic polymers to encapsulate microRNA or even complex readily forming polyplexes. However, fine tuning of chitosan characteristics is necessary for a successful formulation. In this review, we cover all chitosan miRNA formulations investigated in the last 10 years, to the best of our knowledge, so that we can distinguish their differences in terms of materials, formulation processes, and intended applications. The factors that make some optimized systems superior to their predecessors are also discussed to reach the highest potential of chitosan microRNA nanocarriers.
Collapse
|
13
|
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym 2022; 290:119489. [DOI: 10.1016/j.carbpol.2022.119489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
14
|
Costa B, Boueri B, Oliveira C, Silveira I, Ribeiro AJ. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin Drug Deliv 2022; 19:577-594. [DOI: 10.1080/17425247.2022.2075846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Bruno Costa
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Beatriz Boueri
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Claudia Oliveira
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Isabel Silveira
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Antonio J. Ribeiro
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| |
Collapse
|