1
|
Liu Y, Shi Y, Wang Y, Wang Z, Wang Y, Lu Y, Qi H. A novel fucoxanthin enriched seaweed gummy: Physicochemical qualities and protective effect on UVB-induced retinal müller cells. Food Chem X 2024; 23:101648. [PMID: 39113732 PMCID: PMC11304860 DOI: 10.1016/j.fochx.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Retinal disease has become the major cause of visual impairment and vision loss worldwide. Carotenoids, which have the potential antioxidant and eye-care activities, have been widely used in functional foods. Our previous study showed that fucoxanthin could exert photoprotective activity in UVB-induced retinal müller cells (RMCs). To extend the application of fucoxanthin in food industry, fucoxanthin, Undaria pinnatifida pulp (UPP), carrageenan, and other ingredients were mixed to prepare seaweed-flavoured photoprotective gummies in this study. The structural and functional properties of the gummies were then evaluated by physicochemical test and cell experiments. As a result, fucoxanthin enriched gummies presented favourable structural properties and flavour. The hydroxyl groups in fucoxanthin and κ-carrageenan are bonded through hydrogen bonds, forming the spatial network structure inside the gummies, enhancing its elasticity. The gummies showed significant antioxidant effect and alleviated the UVB oxidation damage in RMCs. Moreover, the main ingredients carrageenan and UPP improved the stability of fucoxanthin during in vitro digestion. The results enhance the application of fucoxanthin in functional food with photoprotective activity.
Collapse
Affiliation(s)
- Yu Liu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yixin Shi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhipeng Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yujing Lu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
3
|
Ma Y, Zhou W, Wang H, Wu M, Jiang S, Li Y, Ma C, Zhang R, He J. The double-layer emulsions loaded with bitter melon (Momordica charantia L.) seed oil protect against dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol 2024; 278:134279. [PMID: 39084441 DOI: 10.1016/j.ijbiomac.2024.134279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In this study, a whey protein isolate (WPI)-chitooligosaccharide (COS) stabilized bitter melon (Momordica charantia L.) seed oil emulsions (WC-BSOE) were prepared using the electrostatic layer-by-layer self-assembly technique, and their modulating effects on ulcerative colitis (UC) were investigated in dextran sulfate sodium (DSS)-induced UC mice model. The stability and releasing ability of WC-BSOE under simulated gastrointestinal digestion condition and their acute toxicity were also investigated. The results showed that WC-BSOE was stable to droplet aggregation in the simulated gastric and intestinal fluids and exhibited sustained release profile during gastrointestinal transit, evidenced by the measurement of particle size, polydispersity index, zeta-potential and released free fatty acids contents. Moreover, WC-BSOE had no toxic effects on BALB/c mice within the dose range of 40,000 mg/kg body weight (BW), and treatment with WC-BSOE at a dosage of 15 mg/kg BW effectively relieved DSS-induced UC symptoms in mice. Furthermore, WC-BSOE could improve the IL-4 and IgA contents in serum, as well as up-regulate the occludin and ZO-1 expressions and down-regulate MPO, MDA and ROS levels in colon tissues of colitis mice, and it also elevated the diversity and relative abundances of Firmicutes, Bacteroides, and Lactobacillus in the intestinal microbiota. These findings indicated that WC-BSOE exerted protective effects in UC through decreasing proinflammatory cytokines, increasing tight junction proteins, suppressing oxidative stress, and regulating intestinal microbiota. Collectively, this study suggested WC-BSOE might be developed as a promising dietary supplement for UC protection.
Collapse
Affiliation(s)
- Yan Ma
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huiling Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Sijia Jiang
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Yubao Li
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
4
|
Zhang Q, Deng H, Luo R, Qi H, Lei Y, Yang L, Pang H, Fu C, Liu F. Oral food-derived whey protein isolate-Tremella fuciformis polysaccharides pickering emulsions with adhesive ability to delivery magnolol for targeted treatment of ulcerative colitis. Int J Biol Macromol 2024:135585. [PMID: 39270912 DOI: 10.1016/j.ijbiomac.2024.135585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Magnolol (Mag) is a promising natural compound with therapeutic potential for ulcerative colitis (UC). Here we designed and fabricated an oral food-grade whey protein isolate-Tremella fuciformis polysaccharides (WPI-TFPS) stabilized pickering emulsions to encapsulate Mag (Mag-WPI-TFPS) for targeted treatment of UC. With the assistance of the WPI-TFPS, pickering emulsions were well encapsulated and formed stable microparticles with a particle size of approximately 9.49 ± 0.047 μm, a 93.63 ± 0.21 % encapsulation efficiency and a loading efficiency of 21.53 ± 0.01 %. In vitro, the formulation exhibited sustained-release properties in simulated colon fluid with a cumulative release rate of 60.78 % at 48 h. In vivo, the Mag-WPI-TFPS specifically accumulated in the colon tissue for 24 h with stronger fluorescence intensity, which demonstrated that TFPS and WPI had a good adherence ability to inflamed mucosa by electrostatic attraction and ligand-receptor interactions. As expected, compared with Free-Mag, the oral administration of Mag-WPI-TFPS remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. More importantly, WPI-TFPS enhanced gut microbiota balance by increasing the diversity and relative abundances of Lactobacillaceae and Firmicutes. Overall, this study presents a convenient, eco-friendly, food-derived oral formulation with potential as a dietary supplement for targeted UC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yicheng Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Zhao L, Tao X, Wang K, Song Y, Zhang B, Yang L, Wang Z. Astaxanthin alleviates fibromyalgia pain and depression via NLRP3 inflammasome inhibition. Biomed Pharmacother 2024; 176:116856. [PMID: 38852510 DOI: 10.1016/j.biopha.2024.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
Fibromyalgia is characterised by widespread chronic pain and is often accompanied by comorbidities such as sleep disorders, anxiety, and depression. Because it is often accompanied by many adverse symptoms and lack of effective treatment, it is important to search for the pathogenesis and treatment of fibromyalgia. Astaxanthin, a carotenoid pigment known for its anti-inflammatory and antioxidant properties, has demonstrated effective analgesic effects in neuropathic pain. However, its impact on fibromyalgia remains unclear. Therefore, in this study, we constructed a mouse model of fibromyalgia and investigated the effect of astaxanthin on chronic pain and associated symptoms through multiple intragastrical injections. We conducted behavioural assessments to detect pain and depression-like states in mice, recorded electroencephalograms to monitor sleep stages, examined c-Fos activation in the anterior cingulate cortex, measured activation of spinal glial cells, and assessed levels of inflammatory factors in the brain and spinal cord, including interleukin (IL)-1β, IL-6, and tumour necrosis factor- α(TNF-α).Additionally, we analysed the expression levels of IL-6, IL-10, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Apoptosis-associated speck-like protein containing CARD, and Caspase-1 proteins. The findings revealed that astaxanthin significantly ameliorated mechanical and thermal pain in mice with fibromyalgia and mitigated sleep disorders and depressive-like symptoms induced by pain. A potential mechanism underlying these effects is the anti-inflammatory action of astaxanthin, likely mediated through the inhibition of the NLRP3 inflammasome, which could be one of the pathways through which astaxanthin alleviates fibromyalgia. In conclusion, our study suggests that astaxanthin holds promise as a potential analgesic medication for managing fibromyalgia and its associated symptoms.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Kunpeng Wang
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yuqing Song
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Bohan Zhang
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Li Yang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China.
| | - Zhilin Wang
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
6
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
7
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
8
|
Golestani A, Rahimi A, Najafzadeh M, Sayadi M, Sajjadi SM. "Combination treatments of imatinib with astaxanthin and crocin efficiently ameliorate antioxidant status, inflammation and cell death progression in imatinib-resistant chronic myeloid leukemia cells". Mol Biol Rep 2024; 51:108. [PMID: 38227060 DOI: 10.1007/s11033-023-09135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Imatinib resistance remains a major obstacle in the treatment of chronic myelogenous leukemia (CML). Crocin (CRC) and astaxanthin (ATX) are phytochemicals with anti-cancer properties. AIMS This study aimed to explore the effects of combination treatment of Imatinib with CRC and ATX on Imatinib-resistant K562 (IR-K562) cells. METHODS AND RESULTS After the establishment of IR-K562 cells, growth inhibitory activity was determined by the MTT assay. To test the regeneration potential, a colony formation assay was performed. Cell cycle analyses were examined by flow cytometry. Cell injury was evaluated by lactate dehydrogenase (LDH) leakage. Real-time PCR was applied to assess the expression of IL6, TNF-α, STAT3, BAD, CASP3, TP53, and Bcl-2 genes. Caspase-3 activity was determined by a colorimetric assay. Antioxidant activity was measured using a diphenylpicrylhydrazyl (DPPH) assay. After 48 h of treatment, ATX (IC50 = 30µM) and CRC (IC50 = 190µM) significantly inhibited cell proliferation and colony formation ability, induced G1 cell cycle arrest and cell injury, upregulated the expression of apoptosis-associated genes, and downregulated the expression of anti-apoptotic and inflammatory genes. The combination of IM with ATX and/or CRC synergistically reduced cell viability (combination index [CI] < 1). CONCLUSION Our data suggest that IM shows better therapeutic efficacy at lower doses when combined with ATX and/or CRC.
Collapse
Affiliation(s)
- Amin Golestani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefeh Rahimi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Najafzadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
9
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
10
|
Li C, Zhou Y, Yuan M, Yang Y, Song R, Xu G, Chen G. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles ameliorate ulcerative colitis through antioxidant effects. Front Nutr 2023; 10:1267274. [PMID: 38024351 PMCID: PMC10665485 DOI: 10.3389/fnut.2023.1267274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Astaxanthin (AST) is a type of carotenoid with strong antioxidant effects. However, the development and use of AST are limited by its water insolubility and low bioavailability. This study aims to investigate whether AST@PLGA can inhibit UC and reveal its possible mechanism. Methods We tested the particle size, polydispersity index, and zeta potential of AST@PLGA. Then, the in vitro release and antioxidant capacity of AST@PLGA were tested. Finally, the mouse model of colitis was established and SOD, MDA, TNF-α, IL-1β, IL-6 and P38 as well as ERK were detected from mice. Results Particle size, polydispersity index and zeta potential of AST @PLGA were 66.78 ± 0.64 nm, 0.247 and -9.8 ± 0.53 mV, respectively, and were stable within 14 days. Then, it was observed that the AST@PLGA nanoparticles not only maintained the effect of AST but also had a sustained release effect. Experiments in mice showed that AST@PLGA effectively reduced MDA, TNF-α, IL-1β and IL-6 levels and increased SOD levels. AST@PLGA also downregulated the protein expression of P38 and ERK. The results showed the positive protective effect of AST@PLGA in inhibiting acute colitis. Discussion AST@PLGA nanoparticles have good stability and alleviating effect in colitis, which could be functional foods in the future.
Collapse
Affiliation(s)
- Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yu Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Meng Yuan
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Yawen Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Northern Jiangsu People’s Hospital/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Gang Chen
- School of Rehabilitation Science and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
11
|
Li H, Yu H, Su W, Wang H, Tan M. Tuning the Microstructures of Electrospray Multicore Alginate Microspheres for the Enhanced Delivery of Astaxanthin. ACS OMEGA 2023; 8:41537-41547. [PMID: 37970045 PMCID: PMC10634221 DOI: 10.1021/acsomega.3c05542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Multicore alginate microspheres (MCPs) have been demonstrated as promising carriers for bioactive substances. Herein, the influence of the size of the inner core on the bioaccessibility of astaxanthin (AST) was investigated using both in vitro and in vivo methods. MCPs with different inner core sizes were fabricated in which the oil-in-water emulsion with different oil droplet sizes was embedded in alginate microspheres (AST@MCPs) via the electrospray technology. The AST@MCPs appeared as a uniform sphere with an average size of 300 μm. The AST encapsulation efficiency in the AST@MCPs was determined to be more than 68%, which was independent of the inner core size. The bioaccessibility of AST increased from 38.3 to 83.2% as the size of the inner core decreased. Furthermore, the anti-inflammatory activity of AST@MCPs after in vitro simulated digestion was evaluated by LPS-induced RAW264.7 cells. The results suggested that AST@MCPs with a smaller inner core size exhibited a stronger anti-inflammatory activity, which further proved the results obtained from in vitro simulated digestion. As expected, the oral administration of AST@MCPs significantly mitigated colitis symptoms in DSS-induced ulcerative colitis mice. Compared with AST@MCPs with larger inner cores, AST@MCPs with smaller inner cores reflect stronger anti-inflammatory activity in vivo. These results suggested that the bioaccessibility of AST in MCPs increased significantly with the decrease in the inner core size, which may be attributed to the rapid formation of micelles in the intestine. This work provides a simple and efficient strategy to prepare microspheres for the enhanced delivery of AST, which has important implications for the design of health-promoting foods.
Collapse
Affiliation(s)
- Hongliang Li
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of
Food Science and Engineering, Jilin Agricultural
University, Changchun 130118, P. R. China
| | - Hongjin Yu
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
12
|
Zhao S, Zhao Y, Yang X, Zhao T. Recent research advances on oral colon-specific delivery system of nature bioactive components: A review. Food Res Int 2023; 173:113403. [PMID: 37803751 DOI: 10.1016/j.foodres.2023.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Oral colon-specific delivery system (OCDS) is a targeted approach that aims to directly deliver bioactive compounds directly to the colon following oral administration, thereby enhancing the colonic release of bioactive substances and minimizing adverse reactions. The effectiveness of bioactive substances in the colon hinges on the degree of release, which are affected by various factors including pH, mucosal barrier, delivery time and so on. Therefore, this review provides a comprehensive overview of the key factors affecting oral colon-specific release of bioactive components firstly. Considering the oral safety, this review then mainly focuses on the types of carriers with edible OCDS and preparation strategies for OCDS. Finally, several preparation strategies for loading typical natural bioactive ingredients into oral safe OCDS are reviewed, along with future development prospects.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Qiao X, Gao Q, Yang L, Wang X, Wang Z, Li Z, Xu J, Xue C. In-Depth Analysis of the Mechanism of Astaxanthin Succinate Diester in Reducing Ulcerative Colitis in C57BL/6J Mice Based on Microbiota Informatics. Molecules 2023; 28:6513. [PMID: 37764289 PMCID: PMC10537600 DOI: 10.3390/molecules28186513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This paper aims to explore the effect and mechanism of water-soluble astaxanthin succinate diester (Asta-SD) on ulcerative colitis (UC) induced by dextran sodium sulfate in zebrafish and C57BL/6J mice. Asta-SD was synthesized with hydrophilic fatty acid succinic anhydride and the hydroxyl groups at the ends of F-Asta were synthesized by esterifying. Through the construction of a zebrafish intestinal inflammation model, it was found that Asta-SD could effectively reduce the levels of ROS and increase the number of healthy intestinal lysosomes in zebrafish. After continuous gavage of Asta-SD for seven days, the body weight, disease activity index, colonic length, colonic histopathology, expression of inflammatory factors, and intestinal flora of the mice were measured. The results showed that Asta-SD could significantly alleviate weight loss and colonic shrinkage, as well as reducing pro-inflammatory cytokines and recess injury in UC mice. The 16S rRNA gene sequencing showed that Asta-SD significantly increased the beneficial bacteria (Lactobacillus, Anaerotruncus) and decreased the relative abundance of pathogenic bacteria, effectively maintaining intestinal microbiota homeostasis in mice. Based on Pearson analysis, Bacteroides, Parabacteroides, and Butyrimionas were expected to be associated with the significant difference in the expression of inflammatory factors between the UC and the corresponding host. Thus, Asta-SD significantly improves UC and maintains intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Qun Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| |
Collapse
|
14
|
Lei F, Zeng F, Yu X, Deng Y, Zhang Z, Xu M, Ding N, Tian J, Li C. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J Nanobiotechnology 2023; 21:275. [PMID: 37596598 PMCID: PMC10436423 DOI: 10.1186/s12951-023-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Due to oral nano-delivery systems for the treatment of inflammatory bowel disease (IBD) are often failed to accumulated to the colonic site and could not achieve controlled drug release, it's urgent to develop a microenvironment responsive drug delivery to improve therapy efficacy. Inflammation at the IBD site is mainly mediated by macrophages, which are the key effector cells. Excessive inflammation leads to oxidative stress and intestinal mucosal damage. The use of curcumin (CUR) and emodin (EMO) together for the treatment of IBD is promising due to their respective anti-inflammatory and intestinal mucosal repair effects. In view of the pH gradient environment of gastrointestinal tract, here we prepared pH-responsive sodium alginate (SA) hydrogel-coated nanoemulsions to co-deliver CUR and EMO (CUR/EMO NE@SA) to achieve controlled drug release and specifically target macrophages of the colon. RESULTS In this study, a pH-responsive CUR/EMO NE@SA was successfully developed, in which the CUR/EMO NE was loaded by chitosan and further crosslinked with sodium alginate. CUR/EMO NE@SA had a pH-responsive property and could achieve controlled drug release in the colon. The preparation could significantly alleviate and improve the colon inflammatory microenvironment by decreasing TNF-α and IL-6 expression, increasing IL-10 expression, scavenging reactive oxygen species in macrophages, and by ameliorating the restoration of intestinal mucosal tight junction protein expression. Furthermore, we revealed the molecular mechanism of the preparation for IBD treatment, which might due to the CUR and EMO synergic inhibition of NF-κB to improve the pro-inflammatory microenvironment. Our study provides a new IBD therapy strategy via synergically inhibiting inflammatory, repairing mucosal and clearing ROS by pH-sensitive hydrogel-encapsulated nanoemulsion drug delivery system, which might be developed for other chronic inflammatory disease treatment. CONCLUSIONS It's suggested that pH-sensitive hydrogel-coated nanoemulsion-based codelivery systems are a promising combinatorial platform in IBD.
Collapse
Affiliation(s)
- Fenting Lei
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Nianhui Ding
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
16
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
17
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Yang JY, Chen SY, Wu YH, Liao YL, Yen GC. Ameliorative effect of buckwheat polysaccharides on colitis via regulation of the gut microbiota. Int J Biol Macromol 2023; 227:872-883. [PMID: 36563806 DOI: 10.1016/j.ijbiomac.2022.12.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Plant polysaccharides act as prebiotics by modulating gut microbiota. However, the functional characteristics of buckwheat Fagopyrum tataricum polysaccharides (FTP) and F. esculentum polysaccharides (FEP) on colitis prevention are not valid. This study evaluated the ameliorative effects of FTP and FEP against TNBS-induced colitis via gut microbiota modulation in rats. The characterizations of FTP and FEP were analyzed, including FTIR, TGA, DSC, and monosaccharide composition. In addition, the pathological features of colon length and symptoms in TNBS-induced colitis were improved via the intragastric preadministration of FTP and FEP. The results showed that prefeeding with FTP and FEP decreased inflammatory cytokines (IL-6, IL-1β, and TNF-α), β-glucuronidase, and mucinase, as well as increasing superoxide dismutase, catalase, and glutathione peroxidase levels, in TNBS-induced rats. A decrease in inflammatory signaling-associated proteins (NF-κB, MAPK, COX-2, and iNOS) improved the treatment of TNBS-induced colitis by buckwheat polysaccharides. Moreover, prefeeding with buckwheat polysaccharides increased the Firmicutes/Bacteroidetes ratio and short-chain fatty acid (SCFA) production and decreased the abundance of inflammation-related bacteria (Oscillospiraceae and Oscillibacter). In conclusion, FTP and FEP strongly improved TNBS-induced colitis through antioxidant, anti-inflammatory, and microbiota modulation properties, especially in the high-dose FEP group. Buckwheat polysaccharides have the potential for utilization in functional ingredients or food development.
Collapse
Affiliation(s)
- Jhih-Yi Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yen-Hsien Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yi-Lun Liao
- Department of Crop Improvement, Taichung District Agricultural Research and Extension Station, Council of Agriculture, Chang-Hwa County, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
19
|
Li J, Zhao N, Zhang W, Li P, Yin X, Zhang W, Wang H, Tang B. Assessing the Progression of Early Atherosclerosis Mice Using a Fluorescence Nanosensor for the Simultaneous Detection and Imaging of pH and Phosphorylation. Angew Chem Int Ed Engl 2023; 62:e202215178. [PMID: 36357335 DOI: 10.1002/anie.202215178] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
The inflammatory microenvironment involves changes in pH and protein phosphorylation state and is closely related to the occurrence and development of atherosclerosis (AS). Herein, we constructed a dual-detection fluorescence nanosensor PCN-NP-HPZ based on post modification of MOFs, which realized the simultaneous detection and imaging of pH and phosphorylation through the pH-sensitive group piperazine and the ZrIV node of the MOFs. The sensors were used to monitor changes in blood pH and phosphate levels at different time stages during atherosclerotic plaque formation. Two-photon fluorescence imaging was also performed in the vascular endothelium. Blood tests combined with two-photon fluorescence images indicated that in the early stage of AS, blood and tissue pH levels were lower than that of the normal mice, while phosphate and tissue phosphorylation levels were higher than that of the normal mice. The present study provides a new analysis method for the assessment of early atherosclerotic disease.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Na Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
20
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
21
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
22
|
Chen Y, Su W, Tie S, Zhang L, Tan M. Advances of astaxanthin-based delivery systems for precision nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Chen S, Zhu H, Luo Y. Chitosan-based oral colon-specific delivery systems for polyphenols: recent advances and emerging trends. J Mater Chem B 2022; 10:7328-7348. [PMID: 35766297 DOI: 10.1039/d2tb00874b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral colon-targeted delivery systems (OCDSs) have attracted great attention in the delivery of active compounds targeted to the colon for the treatment of colon and non-colon diseases with the advantages of enhanced efficacy and reduced side effects. Chitosan, the second-most abundant biopolymer next to cellulose, has great biocompatibility, is non-toxic, is sensitive to colonic flora and shows strong adhesion to colonic mucus, making it an ideal biomaterial candidate for the construction of OCDSs. Being rich in functional groups, the chitosan structure is easily modified, both physically and chemically, for the fabrication of delivery systems with diverse geometries, including nanoparticles, microspheres/microparticles, and hydrogels, that are resistant to the harsh environment of the upper gastrointestinal tract (GIT). This review offers a detailed overview of the preparation of chitosan-based delivery systems as the basis for building OCDSs. A variety of natural polyphenols with potent biological activities are used to treat diseases of the colon, or to be metabolized as active ingredients by colonic microorganisms to intervene in remote organ diseases after absorption into the circulation. However, the poor solubility of polyphenols limits their application, and the acidic environment of the upper GIT and various enzymes in the small intestine disrupt their structure and activity. As a result, the development of OCDSs for polyphenols has become an emerging and popular area of current research in the past decade. Thus, the second objective of this review is to systematically summarize the most recent research findings in this area and shed light on the future development of chitosan-based OCDSs for nutritional and biomedical applications.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Honglin Zhu
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Yangchao Luo
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|