1
|
Waqar MA. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. J Drug Target 2025; 33:157-170. [PMID: 39392210 DOI: 10.1080/1061186x.2024.2412142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
3
|
Thamayandhi C, El-Tayeb MA, Syed SR, Sivaramakrishnan R, Gunasekar B. Antibacterial and anti-biofilm efficacy of selenium nanoparticles against Pseudomonas aeruginosa: Characterization and in vitro analysis. Microb Pathog 2024; 196:106998. [PMID: 39384023 DOI: 10.1016/j.micpath.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative opportunistic pathogen, poses significant treatment challenges due to its antibiotic resistance and biofilm formation. This study investigates the anti-bacterial and anti-biofilm activities of chemically synthesized selenium nanoparticles (SeNPs) against P. aeruginosa. SeNPs were synthesized using ascorbic acid as a reducing agent and characterized. Biofilm formation was quantified using a modified microtiter plate method, and the anti-biofilm efficacy of SeNPs was evaluated using confocal microscopy and SEM. The P. aeruginosa isolates exhibited high resistance to piperacillin-tazobactam (60 %) and ceftazidime (59 %). SeNPs demonstrated a round shape with a diameter of 15-18 nm. UV-Vis spectra showed a peak at 275 nm, and XRD analysis revealed crystalline peaks corresponding to selenium. The FTIR spectra confirmed the presence of various functional groups. SeNPs significantly reduced biofilm formation in a dose-dependent manner, with MIC50 and MIC90 values of 60 μg/mL and 80 μg/mL, respectively. Confocal microscopy and SEM analysis showed a notable decrease in biofilm thickness and bacterial adherence post-SeNPs treatment. These findings suggest that SeNPs could be a promising alternative or adjunctive treatment option for combating antibiotic-resistant P. aeruginosa infections. Further research is warranted to explore the clinical applications of SeNPs in treating biofilm-associated infections.
Collapse
Affiliation(s)
- Catherine Thamayandhi
- Department of Microbiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamilnadu, India
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyad, 11451, Saudi Arabia
| | - Shaban Rm Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyad, 11451, Saudi Arabia
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Bhuvaneshwari Gunasekar
- Department of Microbiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamilnadu, India.
| |
Collapse
|
4
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
5
|
Sindi HA, Hamouda RA, Abdel-Hamid MS, Alhazmi NM. Alginate Extracted from Azotobacter chroococcum Loaded in Selenium Nanoparticles: Insight on Characterization, Antifungal and Anticancer Activities. Polymers (Basel) 2024; 16:2065. [PMID: 39065382 PMCID: PMC11281124 DOI: 10.3390/polym16142065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a threatening disease that needs strong therapy with fewer side effects. A lot of different types of chemotherapy or chemo-drugs are used in cancer treatments but have many side effects. The increasing number of antibiotic-resistant microorganisms requires more study of new antimicrobial compounds and delivery and targeting strategies. This work aims to isolate and identify Azotobacter sp., and extract alginate from Azotobacter sp. As well as fabricating selenium nanoparticles using ascorbic acid as reducing agent (As/Se-NPs), and loading extracted alginate with selenium nanoparticles (Alg-Se-NCMs). The As/Se-NPs and Alg-Se-NCMs were categorized by TEM, EDX, UV-Vis spectrophotometry, FT-IR, and zeta potential. The antifungal activities of both As/Se-NPs and Alg-Se-NCMs were investigated against some human pathogen fungi that cause skin infection such as Aspergillus niger (RCMB 002005), Aspergillus fumigatus (RCMB 002008), Cryptococcus neoformans (RCMB 0049001), Candida albicans (RCMB 005003), and Penicillium marneffei (RCMB 001002). The anticancer activities were determined against HCT-116 colorectal cancer and Hep G2 human liver cancer cells. UV spectra of As/Se-NPs and Alg-Se-NCMs confirmed a surface plasmon resonance at 269 and 296 nm, and zeta potential has negative charges -37.2 and -38.7 mV,. Both As/Se-NPs and Alg-Se-NCMs were hexagonal, size ranging from 16.52 to 97.06 and 17.29 to 44.2. Alg-Se-NCMs had anticancer activities against HCT-116 and HepG2. The Alg-Se-NCMs possessed the highest antifungal activities against Cryptococcus neoformans, followed by Aspergillus niger, but did not possess any activities against Penicillium marneffei. Alginate-capped selenium nanoparticles can be used as antifungal and anticancer treatments.
Collapse
Affiliation(s)
- Hebah A. Sindi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (H.A.S.)
| | - Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Marwa S. Abdel-Hamid
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Nuha M. Alhazmi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (H.A.S.)
| |
Collapse
|
6
|
Cui G, Yu X, He M, Huang S, Liu K, Li Y, Li J, Shao X, Lv Q, Li X, Tan M. Biological activity, limitations and steady-state delivery of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:1-50. [PMID: 39218500 DOI: 10.1016/bs.afnr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Food-related functional substances with biological activity serve as a crucial material foundation for achieving precision nutrition, which has gained increasing attraction in regulating physiological functions, preventing chronic diseases, and maintaining human health. Nutritional substances typically include bioactive proteins, peptides, polysaccharides, polyphenols, functional lipids, carotenoids, probiotics, vitamins, saponins, and terpenes. These functional substances play an essential role in precise nutrition. This chapter introduces and summarizes typical functional substances to demonstrate the challenges in precision nutrition for their stability, solubility, and bioavailability. The current status of delivery systems of functional substances is described to give an insight into the development of desirable characteristics, such as food grade status, high loading capacity, site targeting, and controlled release capacity. Finally, the applications of food-borne delivery systems of functional substances for precision nutrition are emphasized to meet the requirement for precision nutrition during nutritional intervention for chronic diseases.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Ming He
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoyang Shao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Qiyan Lv
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xueqian Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China.
| |
Collapse
|
7
|
Al-Adham ISI, Jaber N, Ali Agha ASA, Al-Remawi M, Al-Akayleh F, Al-Muhtaseb N, Collier PJ. Sporadic regional re-emergent cholera: a 19th century problem in the 21st century. J Appl Microbiol 2024; 135:lxae055. [PMID: 38449342 DOI: 10.1093/jambio/lxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Najah Al-Muhtaseb
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| |
Collapse
|
8
|
Wang L, Liu L, Cheng S, Zhu J, Xie H, Zhao W. In vitro and in vivo study of andrographolide nanoparticles for the treatment of Mycoplasma pneumoniae pneumonia. Biochem Biophys Res Commun 2024; 698:149540. [PMID: 38266313 DOI: 10.1016/j.bbrc.2024.149540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVE(S) The emergence of antibiotic resistance has led to suboptimal treatment outcomes for Mycoplasma pneumoniae pneumonia (MPP). Exploring naturally occurring drug components that are both effective against MPP and non-toxic may be a promising choice. This study aimed to investigate the therapeutic effect of andrographolide nanoparticles on pneumonia caused by Mycoplasma pneumoniae infection. METHODS Andrographolide alginate-poloxamer nanoparticles (AND-ALG-POL/NPs) were obtained by wet medium grinding, and the characterization and in vitro release of the prepared andrographolide nanoparticles were examined by high performance liquid chromatography, particle size analyzer, zeta potential meter and transmission electron microscopy. The cytotoxicity and anti-inflammatory effects of AND-ALG-POL/NPs were evaluated in vitro by MP-infected lung epithelial cells BEAS-2B. Symptoms of pneumonia, total cell count, total protein content and inflammatory factor levels in BALF were assessed by MP-induced pneumonia in BALB/c mice treated with AND-ALG-POL/NPs, and histopathological studies were performed on lung tissues from experimental animals. RESULTS The results showed that the prepared AND-ALG-POL/NPs were homogeneous spherical with a diameter of 180 ± 23 nm, a zeta potential of (-14.4 ± 2.1) mV, an average encapsulation rate of 87.74 ± 0.87 %, and an average drug loading of 13.17 ± 0.54 %. AND-ALG-POL/NPs were capable of slow release in vitro and showed significant inhibitory ability against MP (P < 0.001). However, AND-ALG-POL/NPs were not cytotoxic to normal cells and alleviated MP infection-induced apoptosis and elevated inflammatory factors. In the in vivo experiments, AND-ALG-POL/NPs alleviated the symptoms of pneumonia in MPP mice, reduced the abnormally elevated total cell count, total protein content and inflammatory factor levels in BALF, and alleviated lung tissue edema, inflammatory cell infiltration and apoptosis (P < 0.001). Meanwhile, the therapeutic effects of AND-ALG-POL/NPs on MPP were similar to those of azithromycin (AZM) and higher than those of andrographolide (AND) free monotherapy (P < 0.001). CONCLUSION In summary, the prepared AND-ALG-POL/NPs can effectively inhibit MPP in vitro and in vivo, and the effect is similar to that of AZM. Therefore, AND- ALG - POL/NPs have the potential to replace AZM as a potential drug for the treatment of MPP.
Collapse
Affiliation(s)
- Liling Wang
- Department of Paediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Liwei Liu
- Department of Paediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shen Cheng
- Department of Paediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiawen Zhu
- Department of Paediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huanlai Xie
- Department of Paediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wentan Zhao
- Department of Paediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Ye S, Sun S, Cai J, Jiang J. Advances in the Synthesis and Bioactivity of Polysaccharide Selenium Nanoparticles: A Review. Mini Rev Med Chem 2024; 24:1535-1554. [PMID: 38425115 DOI: 10.2174/0113895575302440240219053006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Selenium, an essential trace element of the human body, is pivotal in human health and disease prevention. Nevertheless, the narrow therapeutic index of selenium, where the toxic and therapeutic doses are close, limits its clinical utility. Significantly, nanoscale selenium synthesized by different methods using polysaccharides as stabilizers has low toxicity properties and exhibits excellent bioactivity. Its biological activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, and immune function enhancement, are improved compared with traditional organic and inorganic selenium compounds, conferring greater potential for application in biomedicine. Therefore, this review evaluates the advancements in various synthesis methodologies for polysaccharide selenium nanoparticles (Se NPs) and their biological activities. It aims to provide a comprehensive theoretical basis and research directions for the future development of highly efficient, minimally toxic, and biocompatible polysaccharide-Se NPs and the application of polysaccharide-Se NPs in biomedicine.
Collapse
Affiliation(s)
- Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China. Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China. Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China. Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Manan FAA, Yusof NA, Abdullah J, Nurdin A. Central Composite Design for Optimization of Mitomycin C-Loaded Quantum Dots/Chitosan Nanoparticles as Drug Nanocarrier Vectors. Pharmaceutics 2023; 15:pharmaceutics15010209. [PMID: 36678837 PMCID: PMC9862130 DOI: 10.3390/pharmaceutics15010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the most devastating diseases that leads to a high degree of mortality worldwide. Hence, extensive efforts have been devoted to the development of drug nanocarrier vectors as a potential new cancer treatment option. The main goal of this treatment is to deliver an anticancer medicine successfully and effectively to the patient's cells using non-toxic nanocarriers. Here, we present a drug delivery system to emphasize the optimization of an anticancer drug-loaded formulation using Mitomycin C (MMC) encapsulated in chitosan nanocarrier conjugated with a bioimaging fluorescence probe of Mn:ZnS quantum dots (MMC@CS-Mn:ZnS). Additionally, the Response Surface Methodology (RSM), which uses a quadratic model to forecast the behaviour of the nano-drug delivery system, was used to assess the optimization of encapsulation efficiency. In this investigation, the core points of the Central Composite Design (CCD) model were used with 20 runs and 6 replications. The encapsulation efficiency (EE%) was measured using UV-Vis spectroscopy at 362 nm. The highest EE% is 55.31 ± 3.09 under the optimum parameters of incubation time (105 min), concentration of MMC (0.875 mg/mL), and concentration of nanocarriers (5.0 mg/mL). Physicochemical characterizations for the nanocarriers were accessed using a nanosizer and field-emission scanning electron microscopy (FESEM). Three independent variables for the evaluation of the encapsulation efficiency were used, in which the incubation time, concentration of MMC, concentration of nanocarriers, and correlation for each variable were studied. Furthermore, the MMC drug release efficiency was carried out in four different solution pHs of 5.5, 6.0, 6.5, 7.0, and pH 7.5, and the highest cumulative drug release of 81.44% was obtained in a pH 5.5 release medium, followed by cumulative releases of 68.55%, 50.91%, 41.57%, and 32.45% in release mediums with pH 6.0, pH 6.5, pH 7.0, and pH 7.5. Subsequently, five distinct mathematical models-pseudo-first-order, pseudo-second-order, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic models-were used to fit all of the drug release data. The Korsmeyers-Peppas model was found to fit it well, highlighting its importance for the log of cumulative drug release proportional to the log of time at the equilibrium state. The correlation coefficient value (R2) was obtained as 0.9527, 0.9735, 0.9670, 0.9754, and 0.9639 for the drug release in pH 5.5, pH 6.0, pH 6.5, pH 7.0, and pH 7.5, respectively. Overall, from the analysis, the as-synthesized MMC nanocarrier (MMC@CS-Mn:ZnS) synergistically elucidates the underlying efficient delivery of MMC and leverages the drug loading efficiency, and all these factors have the potential for the simultaneous curbing of non-muscle invasive bladder cancer reoccurrence and progression when applied to the real-time disease treatment.
Collapse
Affiliation(s)
- Fariza Aina Abd Manan
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.A.A.M.); (N.A.Y.)
| | - Nor Azah Yusof
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.A.A.M.); (N.A.Y.)
| | - Jaafar Abdullah
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Gao F, Liu H, Han H, Wang X, Qu L, Liu C, Tian X, Hou R. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Front Pharmacol 2022; 13:1058480. [PMID: 36438830 PMCID: PMC9682150 DOI: 10.3389/fphar.2022.1058480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 10/03/2023] Open
Abstract
Berberidis radix polysaccharide (BRP) extracted as capping agents was applied to prepare BRP-selenium nanoparticles (BRP-SeNPs) in the redox reaction system of sodium selenite and ascorbic acid. The stability and characterization of BRP-SeNPs were investigated by physical analysis method. The results revealed that BRP were tightly wrapped on the surface of SeNPs by forming C-O⋯Se bonds or hydrogen bonding interaction (O-H⋯Se). BRP-SeNPs presented irregular, fragmented and smooth surface morphology and polycrystalline nanoring structure, and its particle size was 89.4 nm in the optimal preparation condition. The pharmacologic functions of BRP-SeNPs were explored in vitro and in vivo. The results showed that BRP-SeNPs could heighten the cell viabilities and the enzyme activity of GSH-Px and decrease the content of MDA on H2O2-induced AML-12 cells injury model. In vivo tests, the results displayed that BRP-SeNPs could increase the body weight of mice, promote the enzyme activity like SOD and GSH-Px, decrease the liver organ index and the hepatic function index such as ALT, AST, CYP2E1, reduce the content of MDA, and relieve the proinflammation factors of NO, IL-1β and TNF-α in CCl4-induced mice injury model. Liver tissue histopathological studies corroborated the improvement of BRP-SeNPs on liver of CCl4-induced mice. The results of Western blot showed that BRP-SeNPs could attenuate oxidant stress by the Nrf2/Keap1/MKP1/JNK pathways, and downregulate the proinflammatory factors by TLR4/MAPK pathway. These findings suggested that BRP-SeNPs possess the hepatoprotection and have the potential to be a green liver-protecting and auxiliary liver inflammation drugs.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huimin Liu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hao Han
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lihua Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|