1
|
Li Y, Xiao L, Cao H, Cao Y, Zhang L. Phylogenomics and functional analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Genes: A critical role in lipid biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14509. [PMID: 39210744 DOI: 10.1111/ppl.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The tung tree (Vernicia fordii Hemsl.), an economically important woody plant, is widely planted for the production of high-quality tung oil. Glycerol-3-phosphate acyltransferases (GPATs), the rate-limiting enzymes in triacylglycerol synthesis, play an important role in seed oil biosynthesis. In this study, we performed a genome-wide analysis of VfGPATs. A total of 9 VfGPATs were identified from the whole tung genome, and phylogenetic analysis divided the VfGPATs into three major clades: clade II (VfGPAT9), clade III (VfATS1) and clade IV (VfGPAT1 ~ 8). Subcellular localization analysis revealed that five VfGPATs (1, 5, 6, 8, and 9) are localized in the endoplasmic reticulum, and four VfGPATs (3-1, 3-2, 3-3, and ATS1) are localized in the chloroplast. Overexpression of VfGPATs in Arabidopsis thaliana revealed that the oil content in VfGPAT8- and VfGPAT9-transgenic plants were significantly increased by 26.60 and 55.94% compared to the wild-type. Transient expression of VfGPAT8 + VfFADX and VfGPAT9 + VfFADX could promote the synthesis of α-eleostearic acid and enhance the accumulation of lipid droplets in tobacco (Nicotiana benthamiana) leaves. We further tested the enzymatic activities of VfGPAT8 and VfGPAT9 with the yeast double mutant strain ZAFU1. The results showed that VfGPAT8 complemented the phosphatidate biosynthetic defect in the double mutant, while VfGPAT9 could not, suggesting that VfGPAT8 has a high acetyltransferase activity. However, altering serine (S) residue at position 113 of VfGPAT9 to threonine (T) could restore its enzymatic activity. This study provided important insights into the evolutionary history of VfGPATs and will promote the genetic improvement of tung trees and related species.
Collapse
Affiliation(s)
- Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lichuan Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
2
|
Cao Y, Mo W, Li Y, Xiong Y, Wang H, Zhang Y, Lin M, Zhang L, Li X. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt. BMC Biol 2024; 22:45. [PMID: 38408951 PMCID: PMC10898138 DOI: 10.1186/s12915-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree. RESULTS Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter's W-box element. CONCLUSIONS This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wanzhen Mo
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yao Xiong
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330224, China.
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, 102209, China.
| |
Collapse
|
3
|
Cao Y, Li X, Song H, Abdullah M, Manzoor MA. Editorial: Multi-omics and computational biology in horticultural plants: from genotype to phenotype, volume II. FRONTIERS IN PLANT SCIENCE 2024; 15:1368909. [PMID: 38371409 PMCID: PMC10869615 DOI: 10.3389/fpls.2024.1368909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Li J, Cao Y, Huang J, Duan Q. Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa. Int J Mol Sci 2023; 24:12447. [PMID: 37569822 PMCID: PMC10420281 DOI: 10.3390/ijms241512447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factor critical for the growth, development, and stress tolerance of plants. However, the function of the AHL gene family in Brassica rapa (B. rapa) remains unclear. In this study, 42 AHL family members were identified from the B. rapa genome and mapped to nine B. rapa chromosomes. Two clades have formed in the evolution of the AHL gene family. The results showed that most products encoded by AHL family genes are located in the nucleus. Gene duplication was common and expanded the BrAHL gene family. According to the analysis of cis-regulatory elements, the genes interact with stress responses (osmotic, cold, and heavy metal stress), major hormones (abscisic acid), and light responses. In addition, the expression profiles revealed that BrAHL genes are widely expressed in different tissues. BrAHL16 was upregulated at 4 h under drought stress, highly expressed under cadmium conditions, and downregulated in response to cold conditions. BrAHL02 and BrAHL24 were upregulated at the initial time point and peaked at 12 h under cold and cadmium stress, respectively. Notably, the interactions between AHL genes and proteins under drought, cold, and heavy metal stresses were observed when predicting the protein-protein interaction network.
Collapse
Affiliation(s)
| | | | | | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.L.); (Y.C.)
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.L.); (Y.C.)
| |
Collapse
|
5
|
Cao Y, Fan T, Wang L, Zhang L, Li Y. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC PLANT BIOLOGY 2023; 23:145. [PMID: 36927311 PMCID: PMC10022305 DOI: 10.1186/s12870-023-04163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND MYB transcription factors are widely distributed in the plant kingdom and play key roles in regulatory networks governing plant metabolism and biochemical and physiological processes. RESULTS Here, we first determined the R2R3-MYB genes in five Euphorbiaceae genomes. The three Trp (W) residues from the first MYB domain (R2) were absolutely conserved, whereas the first W residue from the second MYB domain (R3) was preferentially mutated. The R2R3-MYBs were clustered into 48 functional subfamilies, of which 34 had both R2R3-MYBs of Euphorbiaceae species and AtMYBs, and four contained only Euphorbiaceae R2R3-MYBs. The whole-genome duplication (WGD) and/or segmental duplication (SD) played key roles in the expansion of the R2R3-MYB family. Unlike paralogous R2R3-MYB family members, orthologous R2R3-MYB members contained a higher selective pressure and were subject to a constrained evolutionary rate. VfMYB36 was specifically expressed in fruit, and its trend was consistent with the change in oil content, indicating that it might be involved in oil biosynthesis. Overexpression experiments showed that VfMYB36 could significantly provide linolenic acid (C18:3) content, which eventually led to a significant increase in oil content. CONCLUSION Our study first provides insight into understanding the evolution and expression of R2R3-MYBs in Euphorbiaceae species, and also provides a target for the production of biomass diesel and a convenient way for breeding germplasm resources with high linolenic acid content in the future.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, China
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056009 Handan, China
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, 430065 Wuhan, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| |
Collapse
|
6
|
Cao Y, Fan T, Zhang B, Li Y. Dissection of leucine-rich repeat receptor-like protein kinases: insight into resistance to Fusarium wilt in tung tree. PeerJ 2022; 10:e14416. [PMID: 36590451 PMCID: PMC9798904 DOI: 10.7717/peerj.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
The tung tree is a woody oil plant native to China and widely distributed in the subtropics. The three main species commonly known as Vernicia are V. fordii, V. montana, and V. cordata. The growth and development of V. fordii are affected by a large number of plant pathogens, such as Fusarium wilt caused by Fusarium sp. In contrast, V. montana shows significant resistance to Fusarium wilt. The leucine-rich repeat receptor-like protein kinase (LRR-RLK) is the largest class of receptor-like kinases associated with plant resistance to Fusarium wilt. Here, we identified 239 VmLRR-RLKs in V. montana, and found that there were characteristic domains of resistance to Fusarium wilt in them. Phylogenetic analysis suggested that the VmLRR-RLKs are divided into 14 subfamilies, indicating that homologous genes in the same group may have similar functions. Chromosomal localization analysis showed that VmLRR-RLKs were unevenly distributed on chromosomes, and segment duplications were the main reason for the expansion of VmLRR-RLK family members. The transcriptome data showed that six orthologous pairs were up-regulated in V. montana in response to Fusarium wilt, while the corresponding orthologous genes showed low or no expression in V. fordii in resistance Fusarium wilt, further indicating the important role of LRR-RLKs in V. montana's resistance to infection by Fusarium spp. Our study provides important reference genes for the future use of molecular breeding to improve oil yield and control of Fusarium wilt in tung tree.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China,School of Forestry, Central South University of Forestry and Technology, Changsha, China,Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tingting Fan
- School of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhang
- School of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanli Li
- School of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
Cao Y, Li Y, Wang L, Zhang L, Jiang L. Evolution and function of ubiquitin-specific proteases (UBPs): Insight into seed development roles in tung tree (Vernicia fordii). Int J Biol Macromol 2022; 221:796-805. [PMID: 36037910 DOI: 10.1016/j.ijbiomac.2022.08.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
The tung oil produced by the tung tree (Vernicia fordii) provides resources for the manufacture of biodiesel. Ubiquitin-specific proteases (UBPs) are the largest group of deubiquitinases and play key roles in regulating development and stress responses. Here, 21 UBPs were identified in V. fordii, roughly one-half the number found in Manihot esculenta and Hevea brasiliensis. Most UBP duplications are produced from whole-genome duplication (WGD), and significant differences in gene retention existed among Euphorbiaceae. The great majority of UBP-containing blocks in V. fordii, V. montana, Ricinus communis, and Jatropha curcas exhibited extensive conservation with the duplicated regions of M. esculenta and H. brasiliensis. These blocks formed 14 orthologous groups, indicating they shared WGD with UBPs in M. esculenta and H. brasiliensis, but most of these UBPs copies were lost. The UBP orthologs contained significant functional divergence which explained the susceptibility of V. fordii to Fusarium wilt and the resistance of V. montana to Fusarium wilt. The expression patterns and experiments suggested that Vf03G1417 could affect the seed-related traits and positively regulate the seed oil accumulation. This study provided important insights into the evolution of UBPs in Euphorbiaceae and identified important candidate VfUBPs for marker-assisted breeding in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yanli Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, 430000 Wuhan, China.
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|