1
|
Madhu S, MacKenzie J, Grewal KS, Farooque AA, Koleilat GI, Selopal GS. Titanium Carbide (Ti 3C 2T x) MXene for Sequestration of Aquatic Pollutants. CHEMSUSCHEM 2024; 17:e202400421. [PMID: 38804999 DOI: 10.1002/cssc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
The rapid expansion of industrialization has resulted in the release of multiple ecological contaminants in gaseous, liquid, and solid forms, which pose significant environmental risks to many different ecosystems. The efficient and cost-effective removal of these environmental pollutants has attracted global attention. This growing concern has prompted the synthesis and optimization of nanomaterials and their application as potential pollutant removal. In this context, MXene is considered an outstanding photocatalytic candidate due to its unique physicochemical and mechanical properties, which include high specific surface area, physiological compatibility, and robust electrodynamics. This review highlights recent advances in shaping titanium carbide (Ti3C2Tx) MXenes, emphasizing the importance of termination groups to boost photoactivity and product selectivity, with a primary focus on engineering aspects. First, a broad overview of Ti3C2Tx MXene is provided, delving into its catalytic properties and the formation of surface termination groups to establish a comprehensive understanding of its fundamental catalytic structure. Subsequently, the effects of engineering the morphology of Ti3C2Tx MXene into different structures, such as two-dimensional (2D) accordion-like forms, monolayers, hierarchies, quantum dots, and nanotubes. Finally, a concise overview of the removal of different environmental pollutants is presented, and the forthcoming challenges, along with their prospective outlooks, are delineated.
Collapse
Affiliation(s)
- Swedha Madhu
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, NS, Canada
| | - Jayden MacKenzie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, NS, Canada
| | - Kuljeet Singh Grewal
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A4P3, Canada
| | - Aitazaz A Farooque
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A4P3, Canada
- Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE, Canada
| | - Ghada I Koleilat
- Department of Process Engineering and Applied Science, & Department of Electrical and Computer Engineering, Dalhousie University, Halifax, 5273 Dacosta Row, B3H 4R2, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, NS, Canada
| |
Collapse
|
2
|
Liao Y, Ge W, Liu M, Bi W, Jin C, Chen DDY. Eco-friendly regeneration of lignin with acidic deep eutectic solvent for adsorption of pollutant dyes for water cleanup. Int J Biol Macromol 2024; 260:129677. [PMID: 38266831 DOI: 10.1016/j.ijbiomac.2024.129677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
In this study, a simple and eco-friendly method was used to treat alkaline lignin with an acidic deep eutectic solvent (DES) to obtain regenerated lignin for the efficient adsorption of pollutant dyes from aqueous environment. Based on the yield and adsorption capacity of the sorbent for these dyes, conditions such as the type and concentration of DES component, solid-to-liquid ratio, reaction time, and temperature were optimized. By characterizing and comparing alkali lignin with regenerated lignin, a series of reactions were demonstrated to occur during the DES treatment process. The performance and mechanism of methylene blue and rhodamine B adsorption on regenerated lignin were studied systematically, and the maximum adsorbed amounts were 348.29 and 551.05 mg/g at 323 K, respectively. This study provides a new strategy for the green preparation of functionalized lignin and its use in the water pollutant treatment.
Collapse
Affiliation(s)
- Yuqing Liao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
3
|
Xie S, Hu J, Li K, Zhao Y, Ma N, Wang Y, Jin Y, Guo G, Kumar R, Li J, Huang J, Tian H. Substantial and efficient adsorption of heavy metal ions based on protein and polyvinyl alcohol nanofibers by electrospinning. Int J Biol Macromol 2023; 253:126536. [PMID: 37634775 DOI: 10.1016/j.ijbiomac.2023.126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The adverse effects of heavy metal pollutants in wastewater have threatened human health in recent decades. Therefore, the development of absorbents for such pollutants is essential to overcome these problems. Electrospun nanofibers are often used for wastewater treatment owing to their high porosity and high specific surface area. Zein from plants and collagen from animals are vulnerable to moisture, which limits its broad application in practice. However fully biodegradable polyvinyl alcohol (PVA), which is soluble in water, can be mixed with protein individually to overcome the limitation. In this work, the two proteins described above and PVA were combined to prepare protein nanofibers by electrospinning technology, which could achieve adsorption of Cu2+. As the protein content increased, the adsorption properties of the obtained nanofibers for Cu2+ showed a rising and then decreasing trend, with the highest point at 50 % of protein content, especially the collagen nanofibers, which reached 24.62 mg/g. Both protein nanofibers reached adsorption equilibrium after 15 h, but overall, collagen nanofibers showed a superior adsorption performance for Cu2+ than that by zein nanofibers. In the process of Cu2+ adsorption by protein nanofibers, both physical and chemical effect existed, and the physical effect played the leading role.
Collapse
Affiliation(s)
- Shiyu Xie
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jing Hu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ke Li
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaxin Zhao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Na Ma
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaomin Wang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Gaiping Guo
- College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 7648, India
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
4
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
5
|
Zeng Y, Tang X, Qin Y, Maimaiti A, Zhou X, Guo Y, Liu X, Zhang W, Gao J, Zhang L. Enhanced removal of methylene blue from wastewater by alginate/carboxymethyl cellulose-melamine sponge composite. Int J Biol Macromol 2023:125280. [PMID: 37301350 DOI: 10.1016/j.ijbiomac.2023.125280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Industrial dye wastewater poses a threat to human health due to its harmful effects, and the treatment of related wastewater is receiving increasing attention. In this paper, the melamine sponge with high porosity and convenient separation was selected as matrix material, and alginate/carboxymethyl cellulose-melamine sponge composite (SA/CMC-MeS) was prepared through crosslinking strategy. Not only does the composite cleverly combined the merits of alginate and carboxymethyl cellulose, it also enhanced the adsorption performance for methylene blue (MB). The adsorption data manifested that the adsorption process of SA/CMC-MeS agreed with the Langmuir model and pseudo-second-order kinetic model, and theoretical maximum adsorption capacity was 230 mg/g (pH 8). The characterization results demonstrated that the adsorption mechanism was attributed to the electrostatic attraction between the carboxyl anions on the composite and the dye cations in solution. Importantly, SA/CMC-MeS could selectively separate MB from binary dye system and had positive anti-interference ability in the face of coexisting cations. After 5 times of cycles, the adsorption efficiency remained above 75 %. Based on these outstanding practical properties, this material has a potential to solve dye contamination.
Collapse
Affiliation(s)
- Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangtao Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Adila Maimaiti
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xudong Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yujie Guo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xin Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Gao
- BioLink Pharmaceutical Application System (Jiangsu) Co., Ltd, NanTong 226503, PR China.
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
6
|
Wang D, Wang R, Peng W, Wang Y, Zhang N, Duan Y, Wang S, Liu L. Adsorption of Cu(
II
) in aqueous solution by sodium dodecyl benzene sulfonate‐modified montmorillonite. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Danqi Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Ruicong Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Wencai Peng
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Yi Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Na Zhang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Yanan Duan
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Shiqin Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Linye Liu
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| |
Collapse
|
7
|
Wang QM, Liu ZH, Lü QF. Lignin modified Ti3C2Tx assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
9
|
Xiao T, Jin J, Zhang Y, Xi W, Wang R, Gong Y, He B, Wang H. Rational construction of 2D/2D Ti3C2Tx/NiCo MOF heterostructure for highly efficient Li+ storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|