1
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
2
|
Wang T, Yu X, Wang M, Sun J, Wu M, Zhang R, Niu N, Chen L, Ding L. A high-efficiency strategy for fruit preservation using green, natural raw materials. Int J Biol Macromol 2024; 280:135903. [PMID: 39313059 DOI: 10.1016/j.ijbiomac.2024.135903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Straw is an abundant renewable biomass resource material. Lignin contained in straw is a unique natural aromatic compound in nature. At present, it is urgent to find ways to realize the higher value of natural lignin resources. In this study, alkali lignin was separated from rice straw by hydrothermal method in NaOH solution, which was prepared lignin nanoparticles by a simple green anti-solvent method. The obtained lignin nanoparticles had excellent anti-tyrosinase activity (IC50 = 0.329 mg mL-1) and anti-oxidation performance (IC50 = 0.0451 mg mL-1). Meanwhile, through the analysis of tyrosinase inhibition kinetics, it is concluded that the tyrosinase inhibition by lignin nanoparticles belongs to mixed inhibition. The affinity of lignin nanoparticles to the free enzyme is greater than that of enzyme and substrate complex. In addition, lignin nanoparticles were added to chitosan solution for compounding, then the composite films for fruit preservation were prepared by casting method. The experimental results show that the composite membrane can effectively extend the shelf life of fruits, which is expected to achieve a broader application in the field of fruit preservation and food packaging.
Collapse
Affiliation(s)
- Tong Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xueling Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Mengyuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jianmin Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Renguo Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
3
|
Mukunda DC, Basha S, D'Souza MG, Chandra S, Ameera K, Stanley W, Mazumder N, Mahato KK. Label-free visualization of unfolding and crosslinking mediated protein aggregation in nonenzymatically glycated proteins. Analyst 2024; 149:4029-4040. [PMID: 38963259 DOI: 10.1039/d4an00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nonenzymatic glycation (NEG) unfolds and crosslinks proteins, resulting in aggregation. Label-free evaluation of such structural changes, without disturbing molecular integrity, would be beneficial for understanding the fundamental mechanisms of protein aggregation. The current study demonstrates the assessment of NEG-induced protein aggregation by combining autofluorescence (AF) spectroscopy and imaging. The methylglyoxal (MG) induced protein unfolding and the formation of cross-linking advanced glycation end-products (AGEs) leading to aggregation were evaluated using deep-UV-induced-autofluorescence (dUV-AF) spectroscopy in proteins with distinct structural characteristics. Since the AGEs formed on proteins are fluorescent, the study demonstrated the possibility of autofluorescence imaging of NEG-induced protein aggregates. Autofluorescence spectroscopy can potentially reveal molecular alterations such as protein unfolding and cross-linking. In contrast, AGE-based autofluorescence imaging offers a means to visually explore the structural arrangement of aggregates, regardless of whether they are amyloid or non-amyloid in nature.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - K Ameera
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Weena Stanley
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Chikkanayakanahalli Mukunda D, Rodrigues J, Chandra S, Mazumder N, Vitkin A, Kishore Mahato K. Protein classification by autofluorescence spectral shape analysis using machine learning. Talanta 2024; 267:125167. [PMID: 37714041 DOI: 10.1016/j.talanta.2023.125167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Depending on the relative numbers and spatial arrangement of Tryptophan (Trp; W) and Tyrosine (Tyr; Y) residues, different proteins produce distinct autofluorescence (AF) spectral shapes when excited at ∼280 nm. Yet, considering the vast number and heterogeneous forms in nature, visual analysis and precise identification of proteins based on their AF spectra is challenging and further compounded in cases when different proteins produce substantially similar AF spectral shapes. There is, thus, a serious need to develop a methodology to address this problem. The current study proposes a practical technology to quickly identify proteins using machine learning (ML) algorithms based on their AF spectra. Specifically, AF spectra of fifteen different standard proteins of varying origin with distinct structural and Trp/Tyr compositions were recorded; based on the spectral features selected by the Minimum-Redundancy-Maximum-Relevance (mRMR) algorithm, a multiclass Support Vector Machine (SVM) learning model with Radial Basis Function (RBF), Polynomial, and Linear kernels classified the proteins with high accuracy of 99.06%, 99.03%, and 98.29% respectively. Since protein identification is the key to understand biological functions and disease diagnosis, the proposed methodology could offer a viable alternative to and improve the existing protein identification techniques.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Kosmachevskaya OV, Nasybullina EI, Pugachenko IS, Novikova NN, Topunov AF. Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin. Antioxidants (Basel) 2022; 11:antiox11102007. [PMID: 36290730 PMCID: PMC9599031 DOI: 10.3390/antiox11102007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/17/2023] Open
Abstract
Donors of nitroxyl and nitroxyl anion (HNO/NO−) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO− can level down the non-enzymatic glycation of biomolecules. Since erythrocyte hemoglobin (Hb) is highly susceptible to non-enzymatic glycation, we studied the effect of a nitroxyl donor, Angeli’s salt, on Hb modification with methylglyoxal (MG) and organic peroxide―tert-butyl hydroperoxide (t-BOOH). Nitroxyl dose-dependently decreased the amount of protein carbonyls and advanced glycation end products (AGEs) that were formed in the case of Hb incubation with MG. Likewise, nitroxyl effectively protected Hb against oxidative modification with t-BOOH. It slowed down the destruction of heme, formation of carbonyl derivatives and inter-subunit cross-linking. The protective effect of nitroxyl on Hb in this system is primarily associated with nitrosylation of oxidized Hb and reduction of its ferryl form, which lowers the yield of free radical products. We suppose that the dual (antioxidant and antiglycation) effect of nitroxyl makes its application possible as part of an additional treatment strategy for oxidative and carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elvira I. Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Igor S. Pugachenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-916-157-6367
| |
Collapse
|