1
|
Liu S, Rahman MR, Wu H, Qin W, Wang Y, Su G. Development and application of hydrogels in pathogenic bacteria detection in foods. J Mater Chem B 2025; 13:1229-1251. [PMID: 39690945 DOI: 10.1039/d4tb01341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2024]
Abstract
Hydrogels are 3D networks of water-swollen hydrophilic polymers. It possesses unique properties (e.g., carrying biorecognition elements and creating a micro-environment) that make it highly suitable for bacteria detection (e.g., expedited and effective bacteria detection) and mitigation of bacterial contamination in specific environments (e.g., food systems). This study first introduces the materials used to create hydrogels for bacteria detection and the mechanisms for detection. We also summarize different hydrogel-based detection methods that rely on external stimuli and biorecognition elements, such as enzymes, temperature, pH, antibodies, and oligonucleotides. Subsequently, a range of widely utilized bacterial detection technologies were discussed where recently hydrogels are being used. These modifications allow for precise, real-time diagnostics across varied food matrices, responding effectively to industry needs for sensitivity, scalability, and portability. After highlighting the utilization of hydrogels and their role in these detection techniques, we outline limitations and advancements in the methods for the detection of foodborne pathogenic bacteria, especially the potential application of hydrogels in the food industry.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Md Rashidur Rahman
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| |
Collapse
|
2
|
Kim JT, Chathuranga K, Lee JS, Kim MH, Park WH. Poly(vinyl alcohol)/tannic acid nanofibrous membrane containing curcumin as an intelligent indicator of food spoilage. CHEMOSPHERE 2024; 369:143829. [PMID: 39613002 DOI: 10.1016/j.chemosphere.2024.143829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In recent years, active packaging technology for extending food shelf life and intelligent packaging technology for monitoring food freshness have become essential for ensuring food safety. Among sensing technologies, pH-sensitive sensors have notable advantages, including simplicity, compactness, and affordability, making them ideal for monitoring food freshness. This study proposes an intelligent food indicator based on a composite nanofiber membrane fabricated by electrospinning. The membrane, composed of poly(vinyl alcohol) (PVA), tannic acid (TA), and the natural pH-sensitive dye curcumin (CUR), was heat-treated to enhance its moisture stability for food packaging. Furthermore, the incorporation of TA and CUR into PVA provides additional benefits such as UV-blocking, antioxidant, and antimicrobial properties, effectively delaying food spoilage. The CUR-incorporated nanofibrous membrane exhibited faster detection of shrimp spoilage via colorimetric changes under increasingly alkaline conditions than film samples. Moreover, compared to film-based samples, the composite nanofiber membrane exhibited faster color change responsiveness owing to its porous and high surface area structure, thus serving as an efficient and intelligent indicator.
Collapse
Affiliation(s)
- Jun Tae Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Gyeongsang-daero 2559, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
3
|
Yang H, Yan S, Yang T. Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection. Molecules 2024; 29:4415. [PMID: 39339410 PMCID: PMC11434534 DOI: 10.3390/molecules29184415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Food contamination has emerged as a significant global health concern, posing substantial challenges to the food industry. Bacteria are the primary cause of foodborne diseases. Consequently, it is crucial to develop accurate and efficient sensing platforms to detect foodborne bacteria in food products. Among various detection methods, biosensors have emerged as a promising solution due to their portability, affordability, simplicity, selectivity, sensitivity, and rapidity. Electrospun nanofibers have gained increasing popularity in enhancing biosensor performance. These nanofibers possess a distinctive three-dimensional structure, providing a large surface area and ease of preparation. This review provides an overview of the electrospinning technique, nanofibers and nanofiber-based biosensors. It also explores their mechanisms and applications in the detection of foodborne bacteria such as Salmonella, Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas putida (P. putida).
Collapse
Affiliation(s)
- Haoming Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Song Yan
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhan S, Yi F, Hou F, Song L, Chen X, Jiang H, Han X, Sun X, Liu Z. Development of pH-freshness smart label based on gellan gum film incorporated with red cabbage anthocyanins extract and its application in postharvest mushroom. Colloids Surf B Biointerfaces 2024; 236:113830. [PMID: 38422667 DOI: 10.1016/j.colsurfb.2024.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Novel colorimetric films based on gellan gum (GG) containing red cabbage anthocyanins extract (RCAE) were prepared as pH-freshness smart labels for real-time visual detection of mushroom freshness. The GG/RCAE films had excellent pH and ammonia sensitivity. The GG/RCAE-0.2-0.3 films had the highest sensitivity to acetic acid. The SEM micrographs, AFM images, FT-IR and XRD spectra demonstrated that RCAE were successfully combined into the film-forming substrate. The incorporation of RCAE resulted in the increase of thermal stability, opacity and surface hydrophobicity of films. Meanwhile, the GG/RCAE-0.2 film exhibited stronger tensile strength and excellent color stability at 4℃. The color changes of GG/RCAE-0.2 film were visually easier to distinguish during the storage of mushroom. The results showed the GG/RCAE films could be used as pH-freshness smart labels to detect the freshness of fruits and vegetables.
Collapse
Affiliation(s)
- Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xiuxiu Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Hai Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China.
| |
Collapse
|
6
|
Akhavan-Mahdavi S, Mirbagheri MS, Assadpour E, Sani MA, Zhang F, Jafari SM. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv Colloid Interface Sci 2024; 325:103111. [PMID: 38367336 DOI: 10.1016/j.cis.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Food contamination reveals a major health risk globally and presents a significant challenge for the food industry. It can stem from biological contaminants like pathogens, parasites, and viruses, or chemical contaminants such as heavy metals, pesticides, drugs, and hormones. There is also the possibility of naturally occurring hazardous chemicals. Consequently, the development of sensing platforms has become crucial to accurately and rapidly identify contaminants and hazards in food products. Electrospun nanofibers (NFs) offer a promising solution due to their unique three-dimensional architecture, large specific surface area, and ease of preparation. Moreover, NFs exhibit excellent biocompatibility, degradability, and adaptability, making monitoring more convenient and environmentally friendly. These characteristics also significantly reduce the detection process of contaminants. NF-based sensors have the ability to detect a wide range of biological, chemicals, and physical hazards. Recent research on NFs-based sensors for the detection of various food contaminants/hazards, such as pathogens, pesticide/drugs residues, toxins, allergens, and heavy metals, is presented in this review.
Collapse
Affiliation(s)
- Sahar Akhavan-Mahdavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mahnaz Sadat Mirbagheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Mohammadalinejhad S, Kurek M, Jensen IJ, Lerfall J. The potential of anthocyanin-loaded alginate hydrogel beads for intelligent packaging applications: Stability and sensitivity to volatile amines. Curr Res Food Sci 2023; 7:100560. [PMID: 37589019 PMCID: PMC10425905 DOI: 10.1016/j.crfs.2023.100560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
pH indicators have emerged as promising tools for real-time monitoring of product freshness and quality in intelligent food packaging applications. However, ensuring the stability of these indicators is critical for practical use. This study aims to evaluate the stability of anthocyanins-loaded alginate hydrogel beads of varying sizes at different temperatures under accelerated light conditions and relative humidity (RH) levels of 53% and 97% during 21 days of storage. Moreover, their sensitivity to the principal spoilage volatiles of muscle food products such as ammonia (NH3), dimethylamine (DMA) and trimethylamine (TMA) was investigated. The half-life of cyanidin-3-glucoside in small hydrogel beads was roughly twice as long as that of the larger beads under accelerated light exposure at 4 °C and they were less likely to undergo noticeable color changes over time. Both sizes of hydrogel beads stored at 97% RH and 4 °C showed color stability over the 21-day period with minimal color variation (|ΔE| ≤ 3). The UV-vis spectra of the purple corn extract exhibited changes across pH 2 to 12, as evidenced by the visible color variations, ranging from pink to green. The limit of detection (LOD) for NH3 was 25 ppm for small beads and 15 ppm for large ones. Both types of beads exhibited similar LOD for DMA and TMA, around 48 ppm. This research showed that alginate hydrogel beads containing anthocyanins from purple corn are a viable option for developing intelligent packaging of muscle foods. Furthermore, the use of hydrogel beads of different sizes can be customized to specific muscle foods based on the primary spoilage compound generated during spoilage.
Collapse
Affiliation(s)
- Samira Mohammadalinejhad
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Marcin Kurek
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Ida-Johanne Jensen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
8
|
Wagh RV, Khan A, Priyadarshi R, Ezati P, Rhim JW. Cellulose nanofiber-based multifunctional films integrated with carbon dots and anthocyanins from Brassica oleracea for active and intelligent food packaging applications. Int J Biol Macromol 2023; 233:123567. [PMID: 36754263 DOI: 10.1016/j.ijbiomac.2023.123567] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
A new generation of carbon dot-based active and intelligent packaging films with UV blocking, antibacterial, and real-time sensing potentials was fabricated using Brassica oleracea (BO) extract. The cellulose nanofiber (CNF) was used to prepare the multifunctional intelligent nanocomposite film integrated with BO anthocyanins (BOA) and BO-biowaste-derived carbon dots (BO-CDs). The incorporation of 1.5 % BO-CD and 6 % BOA in the CNF matrix improved the physicochemical and UV blocking (>189 % increase) properties of the fabricated films. The synthesized BO-CD exhibits high fluorescence, UV absorption, antibacterial and antioxidant functions. It showed strong radical scavenging activity against ABTS (~90 %) and DPPH (~80 %) compared to the neat CNF film. Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) have shown enhanced compatibility and elemental composition of the BO-CDs/BOA additives in the CNF-polymer matrix. Packaging tests showed that the prepared film worked efficiently and non-destructively and was able to monitor the freshness of minced pork, fish, and shrimp in real-time through a distinct visual change from red to colorless/yellow during storage at 25 °C for 48 h. Active and intelligent films developed based on CNF/BO-CDs/BOA are expected to be applied as multifunctional packaging materials that can indicate quality changes and extend the shelf life of packaged perishable foods.
Collapse
Affiliation(s)
- Rajesh V Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 14004, India; BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|