1
|
Wei X, Xu K, Qin W, Lv S, Guo M. Hawthorn (Crataegus pinnatifida) berries ripeness induced pectin diversity: A comparative study in physicochemical properties, structure, function and fresh-keeping potential. Food Chem 2024; 455:139703. [PMID: 38823132 DOI: 10.1016/j.foodchem.2024.139703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
The effect of hawthorn berries ripeness on the physicochemical, structural and functional properties of hawthorn pectin (HP) and its potential in sweet cherry preservation were investigated. With the advanced ripeness of hawthorn berries, the galacturonic acid (GalA) content decreased from 59.70 mol% to 52.16 mol%, the molecular weight (Mw) reduced from 368.6 kDa to 284.3 kDa, the microstructure exhibited variable appearance from thick lamella towards porous cross-linked fragment, emulsifying activity and emulsions stability, antioxidant activities, α-amylase and pancreatic lipid inhibitory capacities significantly increased. The heated emulsion stored for 30 d presented higher creaming index and more ordered oil droplets compared to the unheated emulsion. With the extended berries ripeness, the firmness of HP gels remarkably decreased from 225.69 g to 73.39 g, while the springiness increased from 0.78 to 1.16, HP exhibited a superior inhibitory effect in water loss, browning, softening, and bacterial infection in sweet cherries preservation.
Collapse
Affiliation(s)
- Xueyan Wei
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Kang Xu
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Weishuai Qin
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, China
| | - Shuo Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Mengmeng Guo
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Abdillah AA, Lee RC, Charles AL. Improving physicomechanical properties of arrowroot starch films incorporated with kappa-carrageenan: Sweet cherry coating application. Int J Biol Macromol 2024; 277:133938. [PMID: 39029815 DOI: 10.1016/j.ijbiomac.2024.133938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Arrowroot starch (AS)-based films potential is influenced by its low-cost processing and high transparency packaging material but low tensile strength; hence, AS was blended with kappa-carrageenan (KC) to improve mechanical properties of AS-based films and enhance its potential use in food packaging or coating applications. AS-KC-based films were characterized based on structural, physicomechanical, thermal, pasting properties, and coating application in sweet cherry. The films demonstrated high tensile strength from 3.2 to 29.4 MPa and low elongation properties from 160.3 % to 1.9 %. Moreover, AS/KC films exhibited peak viscosities of 18.7 to 34.8 RVU, and thermal analysis depicted lower weight losses (59-45 %) compared to AS-based films (62 %). In addition, sweet cherry samples coated with AS/KC films and stored at 20 °C for 15 days depicted lower weight losses (26.6 %) compared to non-coated samples (>41 %), which indicated the potential use of the film's coating application in extending the shelf life and quality of fresh fruits.
Collapse
Affiliation(s)
- Annur Ahadi Abdillah
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Rui-Chen Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
3
|
Huang X, Li J, He J, Luo J, Cai J, Wei J, Li P, Zhong H. Preparation of curcumin-loaded chitosan/polyvinyl alcohol intelligent active films for food packaging and freshness monitoring. Int J Biol Macromol 2024; 276:133807. [PMID: 38996887 DOI: 10.1016/j.ijbiomac.2024.133807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
To fulfill the current need for intelligent active food packaging. This study incorporated the curcumin inclusion complexes (CUR-CD) into chitosan/polyvinyl alcohol polymer to develop a new intelligent active film. The structures of films were analyzed by Fourier-transform infrared (FT-IR), scanning electron microscope (SEM), and so on. The CP-Cur150 film displays exceptional mechanical properties, water vapor barrier, and UV blocking capabilities as demonstrated by physical analysis. The CP-Cur150 film exhibited free radical scavenging rates on 2,2-diazo-di-3-ethylbenzothiazolin-6-sulfonic (ABTS) (98 %) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (87 %). Additionally, it showed inhibitory effects on Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), reducing live colony counts by approximately 2.7 and 1.3 Log10 CFU/mL, respectively. The films were used to monitor the shrimp's freshness in real time. With the spoilage of shrimp, the film exhibited clear color fluctuations, from light yellow to red. In addition, the evaluation of the impact of films on pork pH, total volatile basic nitrogen, and total bacterial counts demonstrated that the CP-Cur150 film displayed the most significant effectiveness in preserving freshness, thereby extending the shelf life of pork.
Collapse
Affiliation(s)
- Xinghai Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianmin Li
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jingjin He
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianwei Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianhua Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| | - Haiyi Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| |
Collapse
|
4
|
Akay KB, Başyiğit B, Karaaslan M. Fatty-acid incorporation improves hydrophobicity of pea protein based films towards better oxygen/water barrier properties and fruit protecting ability. Int J Biol Macromol 2024; 276:133965. [PMID: 39029831 DOI: 10.1016/j.ijbiomac.2024.133965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The current study was undertaken to synthesize pea protein based films containing fatty acids with various chain lengths. Films namely PFAF1, PFAF2, and PFAF3 were fabricated in the presence of pelargonic acid, margaric acid, and pentacosanoic acid, respectively. Also, negative (PF: film formulated using protein alone) and positive control (PCF: film formulated using mixture of protein and chitosan) control were prepared. Interactions occurring within films were clarified by FTIR. Moreover, morphology and thermal behavior of samples were evaluated by SEM and TGA. Variations in thickness (PF: 0.03 mm, PFAF1: 0.03 mm, PFAF2: 0.04 mm, PFAF3: 0.04 mm, PCF: 0.06 mm) and water content (PF: 28.85 %, PFAF1: 16.20 %, PFAF2: 14.51 %, PFAF3: 12.04 %, PCF: 13.83) were obvious. Superior opacity was identified in PCF, followed by PFAF3, PFAF2, PFAF1, and PF. PFAF3 together with PCF were more successful than others in reducing/protecting oxygen and water permeation. Adding fatty acid or chitosan to protein films led to the decline in tensile strength (TS) and increment in elongation at break (E). As for preservation performances, maximum limitations against shifts in weight and color of bananas during 7-day storage were provided by PFAF3. Also, except for PF, all coatings (especially PFAF3) postponed the rotting of fruits.
Collapse
Affiliation(s)
- Kamile Bayrak Akay
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey.
| |
Collapse
|
5
|
Jin J, Luo B, Xuan S, Shen P, Jin P, Wu Z, Zheng Y. Degradable chitosan-based bioplastic packaging: Design, preparation and applications. Int J Biol Macromol 2024; 266:131253. [PMID: 38556240 DOI: 10.1016/j.ijbiomac.2024.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Food packaging is an essential part of food transportation, storage and preservation. Biodegradable biopolymers are a significant direction for the future development of food packaging materials. As a natural biological polysaccharide, chitosan has been widely concerned by researchers in the field of food packaging due to its excellent film-forming property, good antibacterial property and designability. Thus, the application research of chitosan-based food packaging films, coatings and aerogels has been greatly developed. In this review, recent advances on chitosan-based food packaging materials are summarized. Firstly, the development background of chitosan-based packaging materials was described, and then chitosan itself was introduced. In addition, the design, preparation and applications of films, coatings and aerogels in chitosan-based packaging for food preservation were discussed, and the advantages and disadvantages of each research in the development of chitosan-based packaging materials were analyzed. Finally, the application prospects, challenges and suggestions for solving the problems of chitosan-based packaging are summarized and prospected.
Collapse
Affiliation(s)
- Jing Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bodan Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Gong L, Zhu J, Yang Y, Qiao S, Ma L, Wang H, Zhang Y. Effect of polyethylene glycol on polysaccharides: From molecular modification, composite matrixes, synergetic properties to embeddable application in food fields. Carbohydr Polym 2024; 327:121647. [PMID: 38171672 DOI: 10.1016/j.carbpol.2023.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Polyethylene glycol (PEG) is a flexible, water-soluble, non-immunogenic, as well as biocompatible polymer, and it could synergize with polysaccharides for food applications. The molecular modification strategies, including covalent bond interactions (amino groups, carboxyl groups, aldehyde groups, tosylate groups, etc.), and non-covalent bond interactions (hydrogen bonding, electrostatic interactions, etc.) on PEG molecular chains are discussed. Its versatile structure, group modifiability, and amphiphilic block buildability could improve the functions of polysaccharides (e.g., chitosan, cellulose, starch, alginate, etc.) and adjust the properties of combined PEG/polysaccharides with outstanding chain tunability and matrix processability owing to plasticizing effects, compatibilizing effects, steric stabilizing effects and excluded volume effects by PEG, for achieving the diverse performance targets. The synergetic properties of PEG/polysaccharides with remarkable architecture were summarized, including mechanical properties, antibacterial activity, antioxidant performance, self-healing properties, carrier and delivery characteristics. The PEG/polysaccharides with excellent combined properties and embeddable merits illustrate potential applications including food packaging, food intelligent indication/detection, food 3D printing and nutraceutical food absorption. Additionally, prospects (like food innovation and preferable nutrient utilization) and key challenges (like structure-effectiveness-applicability relationship) for PEG/polysaccharides are proposed and addressed for food fields.
Collapse
Affiliation(s)
- Linshan Gong
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| |
Collapse
|
7
|
Usha ZR, Iqbal O, Aslam MA, Ali S, Liu C, Li N, Zhang S, Wang Z. Pulp waste extracted reinforced powder incorporated biodegradable chitosan composite film for enhancing red grape shelf-life. Int J Biol Macromol 2023; 252:126375. [PMID: 37598829 DOI: 10.1016/j.ijbiomac.2023.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chitosan (CS) is widely used as a natural biopolymer due to its semi-crystalline structure, good film-forming properties, and easy availability. CS-based composite films are widely used in industry, particularly in the food sector as active food packaging. Despite all of these advantages, their wide range of applications are constrained by poor mechanical properties. Therefore, this work introduced refined bamboo cellulose powder (RBCP), a reinforcing material that is extracted from waste bamboo pulp and applied to CS composite films to enhance their mechanical and physicochemical properties. The chemical composition and crystallinity properties of CS composite films with RBCP addition were observed by ATR-FTIR and XRD. The homogeneous and heterogeneous surfaces of the RBCP incorporated films before biodegradation and after biodegradation (20 days) were observed by scanning electron microscopy (SEM). The increase in reinforcing RBCP materials from 0.00 to 5.00 % resulted in an increase in tensile strength for CS/RBCP films from 2.9 to 8.3 MPa. The application of the CS/RBCP/5 composite film as red grapefruit storage was also investigated, which performed much better than commercial plastic and control CS films with 92.8 and 88.6 % viability of S. aureus and E. coli bacteria. Overall achieved properties demonstrated strong potential for usage as active packaging materials to preserve and lengthen the shelf life of red grapefruits.
Collapse
Affiliation(s)
- Zubaida Rukhsana Usha
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| | - Obaid Iqbal
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Muhammad Adnan Aslam
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Sarmad Ali
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Zhenyang Wang
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
8
|
Yang W, Zhang Z, Chen Y, Luo K. Evaluation of the use of Idesia polycarpa Maxim protein coating to extend the shelf life of European sweet cherries. Front Nutr 2023; 10:1283086. [PMID: 38045816 PMCID: PMC10693450 DOI: 10.3389/fnut.2023.1283086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Idesia polycarpa Maxim protein was used as a substrate to prepare a novel food packaging material with bioactive functions for encapsulating and extending the postharvest shelf life of sweet cherries. The film-forming solution was prepared from a mixture of Idesia polycarpa Maxim protein, glycerol, and gelatin, and was cast to form a film at room temperature and evaluated for mechanical, optical, structural, crystallinity, thermal properties, morphology, and antioxidant activity. Idesia polycarpa Maxim protein composite film solution was applied as an edible coating on sweet cherries and evaluated for changes in physical and biochemical parameters of sweet cherries in storage at 20°C and 50% relative humidity for 9 days. The results showed that the film tensile strength increased from 0.589 to 1.981 Mpa and the elongation at break increased from 42.555% to 58.386% with the increase of Idesia polycarpa Maxim protein concentration. And in the in vitro antioxidant assay, IPPF-4.0% was found to have the best antioxidant activity, with scavenging rates of 65.11% ± 1.19%, 70.74% ± 0.12%, and 90.96% ± 0.49% for DPPH radicals, ABTS radicals, and hydroxyl radicals, respectively. Idesia polycarpa Maxim protein coating applied to sweet cherries and after storage at 20°C and 50% relative humidity for 9 days, it was found that the Idesia polycarpa Maxim protein coating significantly reduced the weight loss (54.82% and 34.91% in the Control and Coating-2.5% groups, respectively) and the loss of ascorbic acid content (16.47% and 37.14% in the Control and Coating-2.5% groups, respectively) of the sweet cherries, which can effectively extend the aging of sweet cherry fruits and prolong their shelf life. The developed protein film of Idesia polycarpa Maxim with antioxidant activity can be used as a new food packaging material in the food industry.
Collapse
Affiliation(s)
| | | | | | - Kai Luo
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
9
|
Xie C, Wang F, He Z, Tang H, Li H, Hou J, Liu Y, Jiang L. Development and characterization of active packaging based on chitosan/chitin nanofibers incorporated with scallion flower extract and its preservation in fresh-cut bananas. Int J Biol Macromol 2023; 242:125045. [PMID: 37230454 DOI: 10.1016/j.ijbiomac.2023.125045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to develop a novel active packaging using chitosan (CS) and esterified chitin nanofibers (CF) combined with different contents (1, 2 and 4 wt% on CS basis) of scallion flower extract (SFE) to protect banana samples. The addition of CF significantly improved the barrier and mechanical properties of the CS films (p < 0.05) due to hydrogen bonds and electrostatic interactions. Moreover, the addition of SFE not only improved the physical properties of the CS film but also improved the CS film biological activity. The oxygen barrier property and antibacterial ability of CF-4%SFE were approximately 5.3 and 1.9 times higher than those of the CS film, respectively. In addition, CF-4%SFE had strong DPPH radical scavenging activity (74.8 ± 2.3 %) and ABTS radical scavenging activity (84.06 ± 2.08 %). Fresh-cut bananas stored in CF-4%SFE showed less weight loss, starch loss, color and appearance change than those stored in traditional polyethylene film, which indicated that CF-4%SFE was much better at storing fresh-cut bananas than conventional plastic packaging. For these reasons, CF-SFE films have great potential as a candidate to replace traditional plastic packaging and extend the shelf life of packaged foods.
Collapse
Affiliation(s)
- Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zichuan He
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Jiang A, Patel R, Padhan B, Palimkar S, Galgali P, Adhikari A, Varga I, Patel M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers (Basel) 2023; 15:polym15102235. [PMID: 37242810 DOI: 10.3390/polym15102235] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer for developing food packaging. However, more than the chitosan is required for active packaging. In this review, we summarize chitosan composites which show active packaging and improves food storage condition and extends its shelf life. Active compounds such as essential oils and phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides and various nanoparticles are also summarized. This review provides valuable information for selecting a composite that enhances shelf life and other functional qualities when embedding chitosan. Furthermore, this report will provide directions for the development of novel biodegradable food packaging materials.
Collapse
Affiliation(s)
- Andre Jiang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| | - Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | | | - Padmaja Galgali
- Aadarsh Innovations, Balewadi, Pune 411045, Maharashtra, India
| | | | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
12
|
Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Functional chitosan/zein films with Rosa roxburghii Tratt leaves extracts prepared by natural deep eutectic solvents. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Gheorghita Puscaselu R, Lobiuc A, Sirbu IO, Covasa M. The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of Medicinal Plants. Gels 2022; 8:756. [PMID: 36421579 PMCID: PMC9690358 DOI: 10.3390/gels8110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 09/28/2023] Open
Abstract
The benefits of using biopolymers for the development of films and coatings are well known. The enrichment of these material properties through various natural additions has led to their applicability in various fields. Essential oils, which are well-known for their beneficial properties, are widely used as encapsulating agents in films based on biopolymers. In this study, we developed biopolymer-based films and tested their properties following the addition of 7.5% and 15% (w/v) essential oils of lemon, orange, grapefruit, cinnamon, clove, chamomile, ginger, eucalyptus or mint. The samples were tested immediately after development and after one year of storage in order to examine possible long-term property changes. All films showed reductions in mass, thickness and microstructure, as well as mechanical properties. The most considerable variations in physical properties were observed in the 7.5% lemon oil sample and the 15% grapefruit oil sample, with the largest reductions in mass (23.13%), thickness (from 109.67 µm to 81.67 µm) and density (from 0.75 g/cm3 to 0.43 g/cm3). However, the microstructure of the sample was considerably improved. Although the addition of lemon essential oil prevented the reduction in mass during the storage period, it favored the degradation of the microstructure and the loss of elasticity (from 16.7% to 1.51% for the sample with 7.5% lemon EO and from 18.28% to 1.91% for the sample with 15% lemon EO). Although the addition of essential oils of mint and ginger resulted in films with a more homogeneous microstructure, the increase in concentration favored the appearance of pores and modifications of color parameters. With the exception of films with added orange, cinnamon and clove EOs, the antioxidant capacity of the films decreased during storage. The most obvious variations were identified in the samples with lemon, mint and clove EOs. The most unstable samples were those with added ginger (95.01%), lemon (92%) and mint (90.22%).
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Complex Network Science, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mihai Covasa
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
15
|
Liu X, Zhang J, Cheng X, Liu P, Feng Q, Wang S, Li Y, Gu H, Zhong L, Chen M, Zhou L. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater 2022; 10:rbac085. [PMID: 36683754 PMCID: PMC9847532 DOI: 10.1093/rb/rbac085] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
The restoration of nerve dysfunction after traumatic brain injury (TBI) faces huge challenges due to the limited self-regenerative abilities of nerve tissues. In situ inductive recovery can be achieved utilizing biological scaffolds combined with endogenous human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (MExos). In this study, brain-derived neurotrophic factor-stimulated HUCMSCs-derived exosomes (BMExos) were composited with collagen/chitosan by 3D printing technology. 3D-printed collagen/chitosan/BMExos (3D-CC-BMExos) scaffolds have excellent mechanical properties and biocompatibility. Subsequently, in vivo experiments showed that 3D-CC-BMExos therapy could improve the recovery of neuromotor function and cognitive function in a TBI model in rats. Consistent with the behavioural recovery, the results of histomorphological tests showed that 3D-CC-BMExos therapy could facilitate the remodelling of neural networks, such as improving the regeneration of nerve fibres, synaptic connections and myelin sheaths, in lesions after TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoran Gu
- The 947th Hospital of Chinese People’s Liberation Army, Xinjiang Uygur Autonomous Region, Kashgar 844000, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Miao Chen
- Intensive Care Unit, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region and Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|