1
|
Trovagunta R, Marquez R, Tolosa L, Barrios N, Zambrano F, Suarez A, Pal L, Gonzalez R, Hubbe MA. Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 1. The physical chemistry of lignin self-assembly. Adv Colloid Interface Sci 2024; 332:103247. [PMID: 39126917 DOI: 10.1016/j.cis.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.
Collapse
Affiliation(s)
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Laura Tolosa
- School of Chemical Engineering, Universidad de Los Andes, Mérida, Venezuela
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Antonio Suarez
- WestRock Company, 2742 Charles City Rd, Richmond, VA 23231, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Komisarz K, Majka TM, Kurczab M, Pielichowski K. Synthesis and Characterization of Thermally Stable Lignosulfonamides. Molecules 2022; 27:7231. [PMID: 36364069 PMCID: PMC9659201 DOI: 10.3390/molecules27217231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2023] Open
Abstract
Lignin, a highly aromatic macromolecule building plant cells, and cellulose are two of the most commonly occurring natural polymers. Lignosulfonate is a grade of technical lignin, obtained as a by-product in the paper and wood pulping industries, a result of the used lignin isolation method, i.e., sulfite process. In this work, sodium lignosulfonate is used as a starting material to manufacture sulfonamide derivatives of lignin in a two-step modification procedure. Since this direction of the lignin modification is rather rarely investigated and discussed, it makes a good starting point to expand the state of knowledge and explore the properties of lignosulfonamides. Materials obtained after modification underwent characterization by FTIR, SS-NMR, WAXD, SEM, and TGA. Spectroscopic measurements confirmed the incorporation of dihexylamine into the lignin structure and the formation of lignosulfonamide. The crystalline structure of the material was not affected by the modification procedure, as evidenced by the WAXD, with only minute morphological changes of the surface visible on the SEM imaging. The obtained materials were characterized by improved parameters of thermal stability in relation to the raw material. As-prepared sulfonamide lignin derivatives with a potential application as a filler in biopolymeric composites may become a new class of functional, value-added, sustainable additives.
Collapse
Affiliation(s)
- Karolina Komisarz
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | | | | | | |
Collapse
|