1
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Wang R, Yu Y, Yu W, Sun S, Lei Y, Li Y, Lu C, Zhai J, Bai F, Ren F, Huang J, Chen J. Roles of Probiotics, Prebiotics, and Postbiotics in B-cell mediated Immune Regulation. J Nutr 2024:S0022-3166(24)01178-7. [PMID: 39551357 DOI: 10.1016/j.tjnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024] Open
Abstract
Probiotics, prebiotics, and postbiotics can significantly influence B-cell-related diseases through their immunomodulatory effects. They enhance the immune system's function, particularly affecting B cells, which originate in the bone marrow and are crucial for antibody production and immune memory. These substances have therapeutic potential in managing allergies, autoimmune diseases, and inflammatory conditions by regulating the gut microbiota, strengthening epithelial barriers, and directly interacting with various components of the innate and adaptive immune systems. The review highlights the critical need for further research into the precise mechanisms through which probiotics, prebiotics, and postbiotics modulate B cells. Gaining this understanding could facilitate the development of more effective treatments for B-cell-related diseases by harnessing the immunomodulatory properties of these dietary components.
Collapse
Affiliation(s)
- R Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yf Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wr Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Sy Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ym Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yx Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Cx Lu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jn Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fr Bai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fz Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jq Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - J Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
4
|
Ying ZH, Mao CL, Xie W, Yu CH. Postbiotics in rheumatoid arthritis: emerging mechanisms and intervention perspectives. Front Microbiol 2023; 14:1290015. [PMID: 38029106 PMCID: PMC10662086 DOI: 10.3389/fmicb.2023.1290015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that affects individuals of all age groups. Recently, the association between RA and the gut microbiome has led to the investigation of postbiotics as potential therapeutic strategies. Postbiotics refer to inactivated microbial cells, cellular components, or their metabolites that are specifically intended for the microbiota. Postbiotics not only profoundly influence the occurrence and development of RA, but they also mediate various inflammatory pathways, immune processes, and bone metabolism. Although they offer a variety of mechanisms and may even be superior to more conventional "biotics" such as probiotics and prebiotics, research on their efficacy and clinical significance in RA with disruptions to the intestinal microbiota remains limited. In this review, we provide an overview of the concept of postbiotics and summarize the current knowledge regarding postbiotics and their potential use in RA therapy. Postbiotics show potential as a viable adjunctive therapy option for RA.
Collapse
Affiliation(s)
- Zhen-Hua Ying
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cheng-Liang Mao
- Zhejiang Key Laboratory of Arthritis Diagnosis and Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang University of Technology, Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Chen-Huan Yu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
5
|
Zhang L, Kong H, Li Z, Ban X, Gu Z, Hong Y, Cheng L, Li C. Physicochemical characterizations, α-amylase inhibitory activities and inhibitory mechanisms of five bacterial exopolysaccharides. Int J Biol Macromol 2023; 249:126047. [PMID: 37517764 DOI: 10.1016/j.ijbiomac.2023.126047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Inhibiting pancreatic α-amylase activity can decrease the release rate of glucose, thereby delaying postprandial blood glucose. This study aimed to investigate the physicochemical properties and porcine pancreatic α-amylase (PPA) inhibitory activities of five bacterial exopolysaccharides (EPSs). We also aimed to analyze the differences of their inhibitory activities, exploring the inhibition mechanism between EPSs and PPA. Five EPSs had a low molecular weight (55-66 kDa), which were mainly composed of mannose and glucose with total content exceeding 86 %. The IC50 values of five EPSs (0.162-0.431 mg/mL) were significantly lower than that of acarbose (0.763 mg/mL), indicating that the inhibitory effects of five EPSs on PPA were stronger than acarbose, especially the EPS from Bacillus subtilis STB22 (BS-EPS). Moreover, BS-EPS was a mixed-type inhibitor, whereas other EPSs were noncompetitive inhibitors of PPA. Five EPSs quenched the fluorophore of PPA by the mixed quenching or apparent static quenching. Interestingly, BS-EPS showed stronger binding affinity to PPA than other EPSs. It can be speculated that EPSs with low molecular weight, high carboxylic acid content, and α-glycosidic bond exhibited high PPA inhibitory activity. These results suggest that BS-EPS can effectively inhibit PPA activity and has potential applications in reducing postprandial hyperglycemia.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|