1
|
Li H, Chen H, Shi Z, Yi Z, Hu W, Zhou S, Yang X, Kan J, Awad S, Hegyi F, Du M. Structure and physicochemical properties of rice starch modified with dodecenyl succinic anhydride and its use for microencapsulating Pediococcus acidilactici probiotic. Food Chem 2025; 463:141276. [PMID: 39312832 DOI: 10.1016/j.foodchem.2024.141276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Polysaccharides are used as wall materials to extend the shelf life of lactic acid bacteria. Ice crystal formation during freezing leads to probiotic death. We prepared a series of dodecenyl succinic anhydride (DDSA)-modified rice starches with varying degrees of substitution and compared their functional properties. Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and nuclear magnetic resonance results confirmed successful DDSA modification and the disruption of the long-range ordering of starch molecules. The structural changes modified the physicochemical properties of starch. For example, the apparent viscosity and viscoelastic characteristics of modified rice starch increased, and its freeze-thaw stability and emulsion capacity were remarkably improved after DDSA modification. Moreover, the modified starches exhibited promising performance for microencapsulating Pediococcus acidilactici. This study describes a rice starch derivative with excellent physicochemical properties that can be used to enhance the storage stability of bioactive probiotics.
Collapse
Affiliation(s)
- Huiying Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Huijing Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Zao Shi
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Zhiqiang Yi
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Weizhong Hu
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Shuxin Zhou
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xue Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Sameh Awad
- Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ferenc Hegyi
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, 1022, Herman Otto str. 15, Hungary
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Wang Y, Pi X, Zhang R, Zhang B. Evaluation of moisture migration and microstructure of quick-frozen wet rice flour after freeze-thaw cycles and changes in texture, cooking, and sensory properties. J Food Sci 2024. [PMID: 39455098 DOI: 10.1111/1750-3841.17448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the quality changes of quick-frozen wet rice flour before and after freeze-thaw cycles. As the freeze-thaw cycle was prolonged, the water mobility of quick-frozen wet rice flour decreased and the pore size and porosity of the microstructure increased. As a result, the hardness, cooking loss, water absorption, and water precipitation of the rice flour increased, while the sensory score and viscosity decreased. Correlation analysis showed that porosity was positively correlated with the hardness and water absorption of rice flour, and negatively correlated with structural properties such as shearing work and resilience. Water absorption and water precipitation rate were positively related to cooking loss. Thus, moisture migration in rice flour induced microstructural changes to cause alterations in texture, cooking, and sensory properties. Interestingly, quick-frozen wet rice flour still possessed good texture, cooking, and sensory qualities after two freeze-thaw cycles. This study laid the foundation for the development of high-quality quick-frozen wet rice flour.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Food Science, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Xiaowen Pi
- College of Food Science, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Rui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binjia Zhang
- College of Food Science, Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Naseem S, Bhat SU, Gani A, Bhat FA. Starch exploration in Nelumbo nucifera and Trapa natans: Understanding physicochemical and functional variations for future perspectives. Int J Biol Macromol 2024; 274:133077. [PMID: 38914388 DOI: 10.1016/j.ijbiomac.2024.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The current research emphasis on identifying unconventional starch sources with varied properties to broaden industrial applications. The focus of this research is on the search for alternative sources of starch with different properties in order to expand their potential use in the industrial sector. Starch was extracted from Trapa natans and Nelumbo nucifera and analyzed for their physicochemical and functional properties. They had similar protein (0.35 %) and ash contents, but the nitrogen-free extract was slightly higher in Nelumbo starch (87.58 %) than in Trapa starch (85.09 %). The amylose and amylopectin contents were 23.89 % and 76.11 % in Trapa starch and 15.70 % and 84.30 % in Nelumbo starch, respectively. Fourier-transform infrared spectroscopy identified both as polysaccharides. The characteristic absorption bands assigned to the stretching of OH groups (3324 cm-1; 3280 cm-1), the asymmetric and symmetric stretching of aliphatic chain groups (2925 cm-1; 2854 cm-1), the bending vibration of CHO groups (1149 cm-1; 1144 cm-1) were present in both the starch samples, with the exception of CH3 which could not be detected in Trapa natans starch. X-ray diffraction confirmed hexagonal and orthorhombic crystal structures in Nelumbo nucifera and Trapa natans starch. Scanning electron microscopy revealed a smooth oval and a rough cuboidal shape for lotus and chestnut starch, respectively. Rheological analysis showed that both starch solutions exhibited gel behavior, with Trapa showing stronger gel behavior after the crossover point. These results suggest potential applications in various industries, including the food industry and beyond.
Collapse
Affiliation(s)
- Shahida Naseem
- Department of Environmental Science, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India
| | - Sami Ullah Bhat
- Department of Environmental Science, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India.
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, India
| | | |
Collapse
|
4
|
Wu K, Li C, Li Z, Gu Z, Ban X, Hong Y, Cheng L, Kong H. Enzymatic modification lowers syneresis in corn starch gels during freeze-thaw cycles through 1,4-α-glucan branching enzyme. Int J Biol Macromol 2024; 269:132183. [PMID: 38723826 DOI: 10.1016/j.ijbiomac.2024.132183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The current research in the food industry regarding enzymatic modification to enhance the freeze-thaw (FT) stability of starch is limited. The present study aimed to investigate the FT stability of normal corn starch (NCS) modified using 1,4-α-glucan branching enzyme (GBE) derived from Geobacillus thermoglucosidans STB02. Comprehensive analyses, including syneresis, scanning electron microscopy, and low-field nuclear magnetic resonance, collectively demonstrated the enhanced FT stability of GBE-modified corn starch (GT-NCS-30) in comparison to its native form. Its syneresis was 66.4 % lower than that of NCS after three FT cycles. Notably, GBE treatment induced changes in the pasting properties and thermal resistance of corn starch, while simultaneously enhancing the mechanical strength of the starch gel. Moreover, X-ray diffractograms and microstructural assessments of freeze-thawed gels indicated that GBE treatment effectively hindered the association of corn starch molecules, particularly amylose retrogradation. The enhanced FT stability of GBE-modified starch can be attributed to alterations in the starch structure induced by GBE. This investigation establishes a foundation for further exploration into the influence of GBE treatment on the FT stability of starch and provides a theoretical basis for further research in this area.
Collapse
Affiliation(s)
- Kunrong Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
5
|
Shao GQ, Zhang H, Xu D, Wu FF, Jin YM, Yang N, Yu KJ, Xu XM. Insights into starch-based gels: Selection, fabrication, and application. Int J Biol Macromol 2024; 258:128864. [PMID: 38158059 DOI: 10.1016/j.ijbiomac.2023.128864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Starch a natural polymer, has made significant advancements in recent decades, offering superior performance and versatility compared to synthetic materials. This review discusses up-to-date diverse applications of starch gels, their fabrication techniques, and their advantages over synthetic materials. Starch gels renewability, biocompatibility, biodegradability, scalability, and affordability make them attractive. Also, advanced theoretical foundations and emerging industrial technologies could further expand their scope and functions inspiring new applications.
Collapse
Affiliation(s)
- Guo-Qiang Shao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Huang Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Henan University of Animal Husbandry and Economics, 6 Longzihu North Road, Zhengzhou, 450046, PR China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Feng-Feng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Ya-Mei Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Na Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Ke-Jing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xue-Ming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Cheng D, Guo Y, Du L, Khan I, Liu R, Chang M. Regulate structure and properties of κ-carrageenan/konjac glucomannan composite hydrogel by filling effects of Quillaja saponin-stabilized solid lipid nanostructure. Int J Biol Macromol 2023; 253:127090. [PMID: 37758107 DOI: 10.1016/j.ijbiomac.2023.127090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
κ-Carrageenan/konjac glucomannan (κ-CA/KGM) composite hydrogels often fail to meet industrial requirements due to their low gel strength and poor mechanical properties, while solid lipid nanoparticles are potential materials to address this challenge due to their good biocompatibility. In the study, we propose using Quillaja saponin-stabilized solid lipid nanoparticle (QSLN) as nanofillers to enhance properties of κ-carrageenan/konjac glucan (κ-CA/KGM) composite hydrogels, and with emphasis on the effect of QSLN filling concentration on the structure and properties of composite hydrogels and the possible mechanisms were investigated. The best performance of QSLN-filled composite hydrogels was achieved at the QSLN concentration of 2.4 %. QSLN was uniformly distributed in the hydrogel matrix and formed electrostatic interactions and hydrogen bonding interactions with the matrix at an appropriate filling level, which enhanced the textural and rheological properties of the hydrogel greatly. In addition, the results of low-field NMR experiments showed that the filling of QSLN reduced the water mobility by enhancing the entanglement of polymer chains in the hydrogel matrix, which improved the freeze-thaw stability and regulated the swelling and deswelling behavior of the composite hydrogel. However, with the increasing of QSLN filling concentration, the above improvements were weakened by the depletion of van der Waals interactions due to the large amount of QSLN aggregation and the weakening of electrostatic interaction. In turn, the hydrogel was found to modulate the crystalline behavior of QSLN by X-ray diffraction and differential scanning calorimeter monitoring. Overall, the optimal synergistic effect between structure and properties could be achieved when the QSLN filling concentration was 2.4 %. These results provide a basis for the development of products that require excellent gel properties and structure.
Collapse
Affiliation(s)
- Dekun Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
8
|
Liu W, McClements DJ, Peng X, Jin Z, Chen L. Recent progress in regulating starch digestibility using natural additives and sustainable processing operations. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37933826 DOI: 10.1080/10408398.2023.2278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Zhao D, Li Z, Xia J, Kang Y, Sun P, Xiao Z, Niu Y. Research progress of starch as microencapsulated wall material. Carbohydr Polym 2023; 318:121118. [PMID: 37479436 DOI: 10.1016/j.carbpol.2023.121118] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiayi Xia
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
10
|
Li Y, Luo XE, Tan MJ, Yue FH, Yao RY, Zeng XA, Woo MW, Wen QH, Han Z. Preparation of carboxymethylcellulose / ZnO / chitosan composite hydrogel microbeads and its drug release behaviour. Int J Biol Macromol 2023; 247:125716. [PMID: 37419258 DOI: 10.1016/j.ijbiomac.2023.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ming-Jun Tan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Run-Yu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
11
|
Wang R, Zeng MQ, Wu YW, Teng YX, Wang LH, Li J, Xu FY, Chen BR, Han Z, Zeng XA. Enhanced encapsulation of lutein using soy protein isolate nanoparticles prepared by pulsed electric field and pH shifting treatment. Food Chem 2023; 424:136386. [PMID: 37236083 DOI: 10.1016/j.foodchem.2023.136386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
In this study, soy protein isolate (SPI) was modified by a pulsed electric field (PEF) combined with pH shifting treatment (10 kV/cm, pH 11) to prepare SPI nanoparticles (PSPI11) for efficient loading of lutein. The results showed that when the mass ratio of SPI to lutein was 25:1, the encapsulation efficiency of lutein in PSPI11 increased from 54% to 77%, and the loading capacity increased by 41% compared to the original SPI. The formed SPI-lutein composite nanoparticles (PSPI11-LUTNPs) had smaller, more homogeneous sizes and larger negative charges than SPI7-LUTNPs. The combined treatment favored the unfolding of the SPI structure and could expose its interior hydrophobic groups to bind with lutein. Nanocomplexation with SPIs significantly improved the solubility and stability of lutein, with PSPI11 showing the greatest improvement. As a result, PEF combined with pH shifting pretreatment is an effective method for developing SPI nanoparticles loaded and protected with lutein.
Collapse
Affiliation(s)
- Rui Wang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Man-Qin Zeng
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yu-Wei Wu
- Faculty of Foreign Lauguages, Guangdong Baiyun University, Guangzhou 510641, China
| | - Yong-Xin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Lang-Hong Wang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China
| | - Jian Li
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fei-Yue Xu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China
| | - Bo-Ru Chen
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Xin-An Zeng
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|