1
|
He Y, Gao W, Zhang Y, Sun M, Kuang H, Sun Y. Progress in the preparation, structure and bio-functionality of Dictyophora indusiata polysaccharides: A review. Int J Biol Macromol 2024; 283:137519. [PMID: 39577539 DOI: 10.1016/j.ijbiomac.2024.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Dictyophora indusiata (D. indusiata) is an elegant fungus known as the "mushroom queen" because of its rich nutritional value and resemblance to dancers wearing clean white dresses. Due to the harsh growth environment, the yield of D. indusiata is relatively low. Polysaccharides are the most abundant component among them and it is valued for its unique physiological function. Multiple extraction and purification methods have been used to separate and purify polysaccharides from D. indusiata. These polysaccharides have demonstrated strong biological activities in vitro and in vivo, including anti-inflammatory, anti-tumour, immunomodulatory, antioxidant and anti-hyperlipidemic effects. In addition, D. indusiata polysaccharides have shown promising potential for development and application in the areas of food, healthcare products, pharmaceuticals, and cosmetics. Recent advances in the extraction, purification, structural characterization, biological activities and application prospects of D. indusiata polysaccharides were summarized. This review may enrich the knowledge about bioactive polysaccharides from D. indusiata and provide a theoretical basis. Due to diverse potential health-promoting properties of D. indusiata polysaccharides, further development for their application in functional foods and pharmaceuticals is expected.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Tian S, Peng Z, Zhang J, Yan D, Liang J, Zhao G, Zhong P, Li H, Yang D, Zhao Z. Structural analysis and biological activity of cell wall polysaccharides and enzyme-extracted polysaccharides from pomelo (Citrus maxima (Burm.) Merr.). Int J Biol Macromol 2024; 279:135249. [PMID: 39226981 DOI: 10.1016/j.ijbiomac.2024.135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Pomelo peel is a valuable source of pectin, but research on its cell wall polysaccharides is limited. This study compared the cell wall polysaccharides of pomelo peel, enzyme-extracted polysaccharides of pomelo peel, and enzyme-extracted polysaccharides of whole pomelo fruit. Cell wall polysaccharides, including water-soluble pectin (WSP), chelator-soluble pectin (CSP), sodium carbonate-soluble pectin (NSP), 1 mol/L KOH soluble hemicellulose (KSH-1), and 4 mol/L KOH soluble hemicellulose (KSH-2), were obtained by sequence-extraction method. Total polysaccharides from whole pomelo fruit (TP) and peel-polysaccharides from pomelo pericarps (PP) were obtained using enzyme-extraction method. The structural, thermal, rheological, antioxidant properties, and wound healing effect in vitro were described for each polysaccharide. WSP had a uniform molecular weight distribution and high uronic acid (UA) content, suitable for commercial pectin. NSP had the highest Rhamnose (Rha)/UA ratio and a rich side chain with highest viscosity and water retention. PP displayed the highest DPPH radical scavenging activity and reducing capacity at 0.1 to 2.0 mg/mL concentration range, with an IC50 of 1.05 mg/mL for DPPH free radicals. NSP also demonstrated the highest hydroxyl radical scavenging activity and promoted Human dermal keratinocyte proliferation and migration at 10 μg/mL, suggesting potential applications in daily chemical and pharmaceutical industries.
Collapse
Affiliation(s)
- Shurong Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Zhongcan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jianing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Danna Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jingxi Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Guomin Zhao
- Guangdong L-Med Biotechnology Co., Ltd, Guangzhou 514600, Guangzhou, China
| | - Peng Zhong
- Guangdong L-Med Biotechnology Co., Ltd, Guangzhou 514600, Guangzhou, China
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
4
|
Gallo AL, Marfetán JA, Vélez ML. Antioxidant Activities of Exopolysaccharides Extracts from Two Endemic Fungi from Patagonia. Curr Microbiol 2024; 81:361. [PMID: 39287836 DOI: 10.1007/s00284-024-03883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
A great number of free radicals have a negative impact on the human body, and an increased interest in the identification of new natural molecules with antioxidant properties has emerged due to concerns about synthetic antioxidants. Here, the antioxidant effect of four exo-polysaccharides (EPS) extracts obtained from submerged cultivation of Nothophellinus andinopatagonicus and Pseudoinonotus crustosus (N and P, respectively) in two culture media (M1 and M2) at 2 concentrations (100 and 250 µg/ml) was studied; then, its relation with the chemical composition of the EPS was evaluated. To assess the antioxidant activities of the extracts, several in vitro assays were performed: DPPH and ABTS radical scavenging, ferric-reducing antioxidant power, chelating ability on ferrous ions, and inhibition of the lipid peroxidation. The concentrations tested here were much lower than those reported in previous works. Despite variations in chemical composition and monosaccharide profiles among the extracts, all demonstrated antioxidant activity, although the type of activity differed; only P-M1 exhibited a good antioxidant activity across all assays. This extract contained the highest proportion of phenolic compounds, and also displayed the highest radical scavenging activity. Although the utilization of polysaccharides as functional food ingredients remains limited, we propose P-M1 as a promising candidate for a nutraceutical product. Additionally, a formulation could be made with a combination of extracts to create an antioxidant-rich supplement. Additional research is needed to confirm our findings in a cellular environment and to elucidate the mechanisms that drive their antioxidant activities, ultimately facilitating their development and utilization as nutraceutical products.
Collapse
Affiliation(s)
- Ana L Gallo
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+I), Buenos Aires, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina
| | - Jorge A Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María L Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina.
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina.
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Yu A, Hu W, Bi H, Fu L, Wang Z, Wang M, Kuang H. Recent Advances in Polysaccharides from Chaenomeles speciosa (Sweet) Nakai.: Extraction, Purification, Structural Characteristics, Health Benefits, and Applications. Molecules 2024; 29:2984. [PMID: 38998935 PMCID: PMC11242938 DOI: 10.3390/molecules29132984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024] Open
Abstract
This article systematically reviews the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa (Sweet) Nakai. has attracted the attention of health consumers and medical researchers as a traditional Chinese medicine with edible, medicinal, and nutritional benefits. According to this study, C. speciosa polysaccharides have significant health benefits, such as anti-diaetic, anti-inflammatory and analgesic, anti-tumor, and immunomodulatory effects. Researchers determined the molecular weight, structural characteristics, and monosaccharide composition and ratio of C. speciosa polysaccharides by water extraction and alcohol precipitation. This study will lay a solid foundation for further optimization of the extraction process of C. speciosa polysaccharides and the development of their products. As an active ingredient with high value, C. speciosa polysaccharides are worthy of further study and full development. C. speciosa polysaccharides should be further explored in the future, to innovate their extraction methods, enrich their types and biological activities, and lay a solid foundation for further research and development of products containing polysaccharides that are beneficial to the human body.
Collapse
Affiliation(s)
| | | | | | | | | | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150400, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150400, China
| |
Collapse
|
6
|
Song M, Wang J, Bao K, Sun C, Cheng X, Li T, Wang S, Wang S, Wen T, Zhu Z. Isolation, structural characterization and immunomodulatory activity on RAW264.7 cells of a novel exopolysaccharide of Dictyophora rubrovalvata. Int J Biol Macromol 2024; 270:132222. [PMID: 38729468 DOI: 10.1016/j.ijbiomac.2024.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 μg/mL) promoted NO production up to 30.66 μmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 μg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.
Collapse
Affiliation(s)
- Mingyang Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiawen Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kaisheng Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaolei Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tengda Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shanshan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Siqiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingchi Wen
- Guizhou Panzheng Agriculture Ltd., PR China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Guizhou Panzheng Agriculture Ltd., PR China.
| |
Collapse
|
7
|
Hu Z, Luo Y, Wu Y, Qin D, Yang F, Luo F, Lin Q. Extraction, structures, biological effects and potential mechanisms of Momordica charantia polysaccharides: A review. Int J Biol Macromol 2024; 268:131498. [PMID: 38614167 DOI: 10.1016/j.ijbiomac.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.
Collapse
Affiliation(s)
- Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yidan Luo
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuchi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
8
|
Wang J, Zhang A, Hu Y, Yuan X, Qiu Y, Dong C. Polysaccharides from fructus corni: Extraction, purification, structural features, and biological activities. Carbohydr Res 2024; 538:109072. [PMID: 38484601 DOI: 10.1016/j.carres.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
Fructus Corni, derived from the dried fruit of Cornus officinalis Sieb. Et Zucc., is widely used as a food source and Chinese herb. Fructus Corni, as an indispensable ingredient in Liuwei Dihuang decoction, tonifies the liver and kidneys. As the main component of water decoctions, Fructus Corni polysaccharides demonstrate multifaceted effects, including hypoglycemic, hypolipidemic, antioxidant, anti-aging, sexual function regulation, and anti-epileptic, The ultrasound-assisted extraction method obtained the highest yields of Fructus Corni polysaccharides. However, it has notable shortcomings and lacks further innovation. The homogeneous polysaccharides obtained from Fructus Corni are mostly neutral polysaccharides with relatively limited structure, and the mechanism of their biological activity needs to be further elucidated. In addition, different extraction, isolation and purification methods may change the molecular weight, monosaccharide composition, and biological activity of polysaccharides. Therefore, this study systematically summarized the extraction, purification, structural features, and biological activities of Fructus Corni polysaccharides. This study aimed to provide support for the ongoing development and application of Fructus Corni polysaccharides.
Collapse
Affiliation(s)
- Jie Wang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Aoying Zhang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Xin Yuan
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Yuanhao Qiu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
9
|
Liu T, Zhao M, Zhang Y, Xu R, Fu Z, Jin T, Song J, Huang Y, Wang M, Zhao C. Polysaccharides from Phellinus linteus attenuate type 2 diabetes mellitus in rats via modulation of gut microbiota and bile acid metabolism. Int J Biol Macromol 2024; 262:130062. [PMID: 38340923 DOI: 10.1016/j.ijbiomac.2024.130062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder. Polysaccharides from Phellinus linteus (PLP) have been found to have anti-diabetes effects, but the mechanism has not been elucidated. The purpose of this study was to investigate the mechanism of PLP on T2DM through the gut microbiota and bile acids metabolism. The T2DM rat model was induced by a high-fat high-carbohydrate (HFHC) diet and streptozocin (30 mg/kg). We found that PLP ameliorated diabetes symptoms. Besides, PLP intervention increased the abundance of g_Bacteroides, g_Parabacteroides, and g_Alistioes, which are associated with the biosynthesis of short-chain fatty acids (SCFAs) and bile acids (BAs) metabolism. Meanwhile, untargeted and targeted metabolomics indicated that PLP could regulate the composition of BAs and increase the levels of SCFAs. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were performed to analyze the expression levels of BAs metabolism enzymes in the liver. Finally, the results of correlation analysis and Glucagon-like peptide-1 (GLP-1) showed that PLP stimulated the release of GLP-1 by regulating SCFAs and BAs. In conclusion, this study demonstrated that PLP can regulate gut microbiota and BAs metabolism to promote GLP-1 secretion, thereby increasing insulin release, decreasing blood glucose and attenuating T2DM.
Collapse
Affiliation(s)
- Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Ruixiang Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zixuan Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiaxi Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Huanghe North Street 146, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
10
|
Zhu L, Guan L, Wang K, Ren C, Gao Y, Li J, Yan S, Zhang X, Yao X, Zhou Y, Li B, Lu S. Recent trends in extraction, purification, structural characterization, and biological activities evaluation of Perilla frutescens (L.) Britton polysaccharide. Front Nutr 2024; 11:1359813. [PMID: 38585610 PMCID: PMC10995927 DOI: 10.3389/fnut.2024.1359813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Perilla frutescens (L.) Britton is an annual herb plant of the Perilla genus in the Labiatae family, which is commonly utilized as an edible and medicinal resource. Polysaccharides are among the major components and essential bioactive compounds of P. frutescens, which exhibit a multitude of biological activities, including antioxidant, antitumor, anti-fatigue, immunoregulation, hepatoprotective, anti-inflammatory, and lipid-lowering effects. As a natural carbohydrate, P. frutescens polysaccharide has the potential to be utilized in the development of drugs and functional materials. In this paper, we provide an overview of progress made on the extraction, purification, structural characterization, and bioactivity of polysaccharides from different parts of P. frutescens. The challenges and opportunities for research are discussed, along with the potential development prospects and future areas of focus in the study of P. frutescens polysaccharides.
Collapse
Affiliation(s)
- Ling Zhu
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Kunlun Wang
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Chuanying Ren
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Yang Gao
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Jialei Li
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Song Yan
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Xindi Zhang
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Xinmiao Yao
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Ye Zhou
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Bo Li
- Institute of Food Processing, Heilongjiang Province Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| | - Shuwen Lu
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
| |
Collapse
|
11
|
Kou F, Mei Y, Wang W, Wei X, Xiao H, Wu X. Phellinus linteus polysaccharides: A review on their preparation, structure-activity relationships, and drug delivery systems. Int J Biol Macromol 2024; 258:128702. [PMID: 38072341 DOI: 10.1016/j.ijbiomac.2023.128702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Phellinus linteus polysaccharides exhibit antitumor, immunomodulatory, anti-inflammatory, and antioxidant properties, mitigate insulin resistance, and enhance the diversity and abundance of gut microbiota. However, the bioactivities of P. linteus polysaccharides vary owing to the complex structure, thereby, limiting their application. Various processing strategies have been employed to modify them for improving the functional properties and yield. Herein, we compare the primary modes of extraction and purification employed to improve the yield and purity, review the structure-activity relationships, and discuss the application of P. linteus polysaccharides using nano-carriers for the encapsulation and delivery of various drugs to improve bioactivity. The limitations and future perspectives are also discussed. Exploring the bioactivity, structure-activity relationship, processing methods, and delivery routes of P. linteus polysaccharides will facilitate the development of functional foods and dietary supplements rich in P. linteus polysaccharides.
Collapse
Affiliation(s)
- Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
12
|
Dong Y, Wang T, Gan B, Wasser SP, Zhang Z, Zhao J, Duan X, Cao L, Feng R, Miao R, Yan J, Wu Z. Antioxidant activity of Phellinus igniarius fermentation mycelia contributions of different solvent extractions and their inhibitory effect on α-amylase. Heliyon 2024; 10:e23370. [PMID: 38234922 PMCID: PMC10792562 DOI: 10.1016/j.heliyon.2023.e23370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Phellinus spp. have historically been used as traditional medicines to treat various diseases owing to their antioxidant, antitumor, and antidiabetic activities. Polysaccharides exhibit antidiabetic activity. In the present study, the polysaccharide contents of four Phellinus strains were compared. Phellinus igniarius QB72 possessed higher polysaccharide production, stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and α-amylase inhibitory activity. The three polysaccharides were sequentially extracted and partially purified from the fermentation mycelia using hot water, 1 % (NH4)2C2O4, and 1.25 M NaOH. Hot water extract polysaccharides exhibited higher DPPH radical scavenging and strong inhibitory activity against α-amylase with an IC50 value of 6.84 ± 0.37 mg/mL. The carbohydrate content of A1 (approximately 17457 Da) was approximately 88.28 %. The α-amylase inhibitory activity IC50 was decreased (3.178 ± 0.187 mg/mL) after DEAE water elution. P. igniarius QB72 hot-water extracts of partially purified polysaccharides have great potential as α-amylase inhibitors in food and medication-assisted additives.
Collapse
Affiliation(s)
- Yating Dong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Solomon P. Wasser
- International Centre for Biotechnology and Biodiversity of Fungi, Institute of Evolution and Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | - Zhiyuan Zhang
- Sichuan Academy of Agricultural Science, Institute of Agricultural Resources and Environment, SAAS, Institute of Edible Fungi, Shizishan Road NO. 4, Jinjiang District, Chengdu, 610066, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Xinlian Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Luping Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| | - Zhi Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
- National Agricultural Science & Technology Center (NASC), 36 Lazi East Road, Tianfu New Area, Chengdu, 610000, China
| |
Collapse
|
13
|
Metsebing BP, Oba R, Tsigain FT, Fonkui TY, Fotsing MCD, Mungoh TC, Ndinteh DN, Mossebo DC. Antifungal and Antibacterial Activities of Crude Extracts of Four Phellinus Species and Coltricia fragilissima (Agaricomycetes) from Cameroon and Democratic Republic of Congo. Int J Med Mushrooms 2024; 26:9-18. [PMID: 39171628 DOI: 10.1615/intjmedmushrooms.2024054634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Antifungal and antibacterial activities of crude extracts of Phellinus extensus, Ph. gilvus, Ph. pachyphloeus, Ph. senex and Coltricia fragilissima were investigated on eleven species of bacteria and three fungal human pathogens. The minimum inhibitory concentration (MIC) was determined by the microdilution method. The results of this study reveal that for the eleven strains of bacteria tested, including Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, Enterobacter cloacae, Klebsiella aerogenes, Mycobacterium smegmatis, Proteus vulgaris, Proteus mirabilis and Escherichia choli, the MIC of the crude extract of the four species of Phellinus as well as that of C. fragilissima ranged from 3.13 to 12.50 mg/mL. For the three strains of fungi tested including Candida albicans, Aspergillus ochraceus and A. fumigetus, the MIC of the crude extracts of the same four species of Phellinus as well as that of C. fragilissima ranged from 0.39 to 3.13 mg/mL. These data reveal that the antimicrobial activity of crude extracts of Phellinus and Coltricia species is stronger on pathogenic fungi than on bacteria. C. fragilissima being of the same family as Phellinus and having recorded the values of MIC eminently close to those of the latter may potentially be used for medicinal purposes like the investigated Phellinus species. Being highly represented in the sub-Saharan regions and owing to the above-mentioned results, these species could now be considered as part of the non-exhaustive list of medicinal mushrooms in these regions and may constitute a new source of natural molecules that may be more active than synthetic products against certain fungal and bacterial borne diseases.
Collapse
Affiliation(s)
- Blondo-Pascal Metsebing
- Mycological Laboratory, University of Yaoundé 1, B.P. 1456 Yaoundé, Cameroon; Department of Biotechnology and Food Technology, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa; Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa
| | - Romuald Oba
- Mycological Laboratory, University of Yaoundé 1, B.P. 1456 Yaoundé, Cameroon; Department of Biotechnology and Food Technology, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa; Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa
| | | | - Thierry Youmbi Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa
| | - Marthe Carine Djuidje Fotsing
- Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa
| | - Tata Charlotte Mungoh
- Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa
| | - Derek Ntantoh Ndinteh
- Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus 2028, South Africa
| | | |
Collapse
|
14
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
15
|
Liang X, Liu M, Wei Y, Tong L, Guo S, Kang H, Zhang W, Yu Z, Zhang F, Duan JA. Structural characteristics and structure-activity relationship of four polysaccharides from Lycii fructus. Int J Biol Macromol 2023; 253:127256. [PMID: 37802446 DOI: 10.1016/j.ijbiomac.2023.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
At present, the structure-activity relationship of polysaccharides is a common and important focus in the fields of glycobiology and carbohydrate chemistry. To better understand the effect of specific polysaccharide structures on bioactive orientation, four homogeneous polysaccharides from Lycii fructus, one neutral along with three acidic polysaccharides, were purified, structurally characterized and comparatively evaluated on the antioxidative and anti-aging activities. The GC-MS-based monosaccharide composition analysis and methylation results showed that the LFPs had similar glycosyl types but varied proportions. Nuclear magnetic resonance (NMR) spectroscopy showed that LFPs consisted of arabinogalactan, rhamnogalacturonan and homogalacturonan structural domains. The results of the structure-activity relationship indicated that the antioxidative activity was positively correlated with the galacturonic acid (GalA) content, while the neutral multi-branched chains might be responsible for the anti-aging activity. This study is the first time to compare the principal structures and multiple biological activities of LFPs, which provided a reference for the industrial development and deep excavation of the health value of LFPs.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Limei Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongjie Kang
- Ningxia Innovation Center of Goji R & D, Yinchuan 750002, PR China
| | - Wenhua Zhang
- Bairuiyuan Gouqi Co., Ltd., Yinchuan 750200, PR China
| | - Zhexiong Yu
- Tianren Ningxia Wolfberry Biotechnology Co., Ltd., Zhongning 755100, PR China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Syukriya AJ, Bankeeree W, Prasongsuk S, Yanatatsaneejit P. In vitro antioxidant and anticancer activities of Smilax corbularia extract combined with Phellinus linteus extract against breast cancer cell lines. Biomed Rep 2023; 19:63. [PMID: 37614981 PMCID: PMC10442767 DOI: 10.3892/br.2023.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Treatment with extracts from whole herbs has been reported to synergistically enhance the anticancer activities of therapeutic agents in recent studies. The present study evaluated the antioxidant and anticancer activities of Smilax corbularia Kunth (S. corbularia) and Phellinus linteus (P. linteus) crude extracts individually and in combination. S. corbularia was extracted using ethanol, whereas P. linteus was extracted using hot water. Both crude extracts underwent physiochemical characterization. Subsequently, the possible antioxidant activities of both crude extracts, individually and in combination, were evaluated using 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assays. Their effects on breast cancer cell cytotoxicity, proliferation and apoptosis were then assessed. The crude S. corbularia extract obtained was found to have a high level of total phenolic content, whilst the crude P. linteus extract had high levels of total polysaccharide content. The total phenolic content and total polysaccharide content results of the combinations depended on the respective ratios of the individual extracts. S. corbularia alone and combination 3 (which contained 75% S. corbularia: 25% P. linteus) demonstrated the greatest radical scavenging activity, followed by combination 1 (50% S. corbularia: 50% P. linteus), combination 2 (25% S. corbularia: 75% P. linteus) and P. linteus. The toxicity results of the extract samples on the cancer cells corresponded with their antioxidant activity. In particular, certain combinations demonstrated clearer inhibitory effects on cell proliferation against three types of breast cancer cells compared with those exerted by the two individual extracts. However, induction of apoptosis was limited, with the degree of apoptosis observed to be #x003C;5%. These findings suggested that treatment with combinations of these two extracts could confer enhanced antioxidant and antiproliferative effects on breast cancer cells. Therefore, the potential of these two extracts in combination as anticancer agents warrants further investigation.
Collapse
Affiliation(s)
| | - Wichanee Bankeeree
- Plant and Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sehanat Prasongsuk
- Plant and Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattamawadee Yanatatsaneejit
- Human Genetics Research Group and Plant Breeding Laboratory, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Gao N, Zhang W, Hu D, Lin G, Wang J, Xue F, Wang Q, Zhao H, Dou X, Zhang L. Study on Extraction, Physicochemical Properties, and Bacterio-Static Activity of Polysaccharides from Phellinus linteus. Molecules 2023; 28:5102. [PMID: 37446762 DOI: 10.3390/molecules28135102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
We optimized an ultrasound-assisted extraction process of Phellinus linteus mycelium polysaccharides (PLPs) and studied their monosaccharide composition and bacteriostatic properties. Based on a single-factor experiment, a three-factor, three-level Box-Behnken design was used to optimize the ultrasound-assisted extraction process of PLP, using the yield of PLP as the index. The chemical composition and monosaccharide composition of PLP were determined by chemical analysis and HPLC analysis, respectively. Microscopic morphological analysis of the surface of PLP was performed via swept-surface electron microscopy. The bacteriostatic properties of PLP were determined using the spectrophotometric turbidimetric method. The results showed that the best extraction process of PLP with ultrasonic assistance achieved a result of 1:42 g/mL. In this method, the ultrasonic temperature was 60 °C, ultrasonic extraction was performed for 20 min, and the yield of PLP was 12.98%. The monosaccharide composition of PLP mainly contains glucose (Glc), mannose (Man), galactose (Gal), and glucuronic acid (GlcA). The intracellular polysaccharide of Phellinus igniarius Mycelia (PIP) is an irregular spherical accumulation, the surface is rough and not smooth, and the extracellular polysaccharide (PEP) is a crumbly accumulation. PIP has a stronger inhibitory ability for S. aureus and E. coli and a slightly weaker inhibitory effect for B. subtilis; the inhibitory effect of PEP on S. aureus, E. coli, and B. subtilis is slightly inferior to that of PIP.
Collapse
Affiliation(s)
- Nengbin Gao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Weijia Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Dianjie Hu
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Guo Lin
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Jingxuan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Feng Xue
- Jilin Province Changbai Forest Management Bureau, Baishan 134499, China
| | - Qian Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Hongfei Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| |
Collapse
|
18
|
Liu T, Zhao M, Zhang Y, Wang Z, Yuan B, Zhao C, Wang M. Integrated microbiota and metabolite profiling analysis of prebiotic characteristics of Phellinus linteus polysaccharide in vitro fermentation. Int J Biol Macromol 2023; 242:124854. [PMID: 37182617 DOI: 10.1016/j.ijbiomac.2023.124854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Phellinus linteus polysaccharide (PLP) had received increasing attention due to its multiple biological activities. Herein, the extraction, characterization and in vitro fermentation of PLP were studied to explore its physiochemical properties and the interaction mechanism between the gut microbiota and PLP. The results obtained demonstrated that PLP was mainly composed of 9 monosaccharides, with three gel chromatographic peaks and molecular weights (Mw) of 308.45 kDa, 13.58 kD and 3.33 kDa, respectively. After 48 h fermentation, the Mw, total sugar, reducing sugar, pH and monosaccharides composition were decreased. Furthermore, PLP regulated the composition of gut microbiota, such as promoting the proliferation of beneficial bacteria such as Bacteroides, Prevotella and Butyricimonas, while preventing the growth of pathogenic bacteria such as Escherichia-Shigella, Morganella and Intestinimonas. Gut microbiota metabolites regulated by PLP such as short-chain fatty acids were the main regulators that impact the host health. Bioinformatics analysis indicated that butyrate, bile acid and purine metabolism were the main metabolic pathways of PLP regulating host health, and the Bacteroides was the key genus to regulate these metabolic pathways. In conclusion, our finding suggested that PLP may be used as a prebiotic agent for human health because of its ability to regulate gut microbiota.
Collapse
Affiliation(s)
- Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Bo Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|