1
|
Guo J, Khan MR, Ahmad N, Zhang W. Enhancing fruit preservation with sodium alginate films incorporating propolis extract and graphene oxide. Int J Biol Macromol 2024; 288:138778. [PMID: 39675617 DOI: 10.1016/j.ijbiomac.2024.138778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
In this work, sodium alginate (SA) composite films containing propolis extract (PRO) and graphene oxide (GO) were developed. Subsequently, the effects of PRO and GO on different properties of SA composite films were studied, and the films were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The PRO release properties and fruit preservation performance of the developed composite films were also investigated. The results showed that the incorporation of PRO resulted in a 51.16% increase in tensile strength. The simultaneous incorporation of PRO and GO reduced water vapor permeability (WVP) by 22.56% compared to the SA film. The temperatures at which the SA/GO/PRO film lost 5% of its weight were 8.0°C higher than those of the SA film. The incorporation of GO into the SA/PRO composite film also modulates the release of PRO. Furthermore, the incorporation of PRO and GO improved the tensile strength of the SA film, as reflected in the microstructure of the films. The reduced WVP of the SA composite film allowed the packaged blueberries to exhibit less weight loss and shrinkage, thereby prolonging their shelf life.
Collapse
Affiliation(s)
- Junyan Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China.
| |
Collapse
|
2
|
Kafashan A, Babaei A. Development and investigation of a polysaccharide ternary nanocomposite based on basil seed gum/graphene oxide/anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 280:135537. [PMID: 39306180 DOI: 10.1016/j.ijbiomac.2024.135537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
A new pH-sensitive intelligent packaging system was developed composed of extracted and purified basil seed gum (BG) containing aqueous malva sylvestris extract (MS) and varying amounts of synthesized graphene oxide (GO). In the following, the characteristics of prepared films including spectroscopic, physio-mechanical, thermogravimetry, fracture-surface morphology, anthocyanin release, and pH and TVB-N sensitivity, were investigated. Our results revealed that the addition of 0.5 wt % MS into the BG matrix induced pH sensitivity to the film and resulted in a visible color change from pH 2.0 to 14.0; however, it reduced the thermal and physio-mechanical properties. In this regard, the effective presence of the optimum concentration of GO (0.25 wt%) in enhancing the mechanical and thermal properties of the BG-MS films was shown. Moreover, inspecting the release kinetics demonstrated a controllable release for BG-MS-GO film compared to the BG-MS film in 48 h. Furthermore, the total volatile basic nitrogen (TVB-N) content and pH value were shown to be highly correlated with the color changes of the freshness indicator film during the storage of salmon fillets at 25 °C for 36 h. Therefore, it was shown that BG-MS-GO film can be used as a highly effective freshness/spoilage indicator of proteinic products.
Collapse
Affiliation(s)
- Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| |
Collapse
|
3
|
Liu M, Chen H, Pan F, Wu X, Zhang Y, Fang X, Li X, Tian W, Peng W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr Polym 2024; 343:122445. [PMID: 39174125 DOI: 10.1016/j.carbpol.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
4
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
5
|
Shahabi N, Fallah AA, Sami M, Habibian Dehkordi S. Effect of tragacanth gum-chitin nanofiber film containing free or nano-encapsulated cumin essential oil on the quality of chilled turkey burgers packed with oxygen absorber. Food Sci Nutr 2024; 12:5605-5618. [PMID: 39139976 PMCID: PMC11317702 DOI: 10.1002/fsn3.4202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 08/15/2024] Open
Abstract
This research was undertaken to assess the effect of tragacanth gum-chitin nanofiber (TG-CNF) film containing free (CEO) or encapsulated cumin essential oil (CNE) combined with oxygen absorber (OA) packaging on the shelf-life of ready-to-cook (RTC) turkey breast burgers during chilled storage. The experimental groups were OA and TG-CNF as single treatments, TG-CNF + CEO, TG-CNF + CNE, and TG-CNF + OA as binary treatments, TG-CNF + CEO + OA and TG-CNF + CNE + OA as ternary treatments, and control. The samples were stored at 3°C for 20 days and analyzed for microbial, physicochemical, and sensory attributes. Binary treatments, when compared to single treatments, and ternary treatments, when compared to binary treatments, exhibited enhanced effectiveness in managing microbial growth, hindering physicochemical alterations, and decelerating sensory alterations. At day 20, TG-CNF + CNE + OA group was identified as the most effective group in inhibiting the growth of total mesophilic bacteria (TMB), total psychrophilic bacteria (TSB), and coliforms (final counts were 4.8, 4.16, and ≤1 log CFU/g, respectively), and TG-CNF + CNE + OA and TG-CNF + CEO + OA groups were known as the most effective groups in inhibiting lactic acid bacteria (LAB) (final counts were 4.71 and 5.15 log CFU/g, respectively). Furthermore, the TG-CNF + CNE + OA treatment proved to be the most effective group in reducing the total volatile nitrogen (TVN) (final level was 19.2 mg N/100 g) and thiobarbituric acid reactive substances (TBARS) (final level was 0.119 mg malondialdehyde (MDA)/kg). TG-CNF + CNE + OA and TG-CNF + CEO + OA were the most efficient groups to delay the increasing rate of cooking loss (final values were 23.3% and 24.6%) and pH (final values were 7.01 and 6.99). The sample's shelf-life was 4 days in control and TG-CNF, 8 days in OA and TG-CNF + OA, 12 days in TG-CNF + CEO, 16 days in TG-CNF + CNE and TG-CNF + CEO + OA, and at least 20 days in TG-CNF + CNE + OA. As a result, the incorporation of TG-CNF + CNE alongside OA packaging emerges as a highly effective active packaging method for preserving RTC turkey breast burgers during chilled storage.
Collapse
Affiliation(s)
- Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Saeid Habibian Dehkordi
- Department of Basic Sciences, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| |
Collapse
|
6
|
Yu M, Hou Y, Zheng L, Han Y, Wang D. Soy protein isolate-based active films functionalized with Zanthoxylum bungeanum by-products: Effects on barrier, mechanical, antioxidant and cherry tomato preservation performance. Int J Biol Macromol 2023; 253:127539. [PMID: 37858653 DOI: 10.1016/j.ijbiomac.2023.127539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
In this work, soy protein isolate (SPI)-based films enriched with naturally sourced Zanthoxylum bungeanum leaf extract (ZBLE) were prepared. Different ZBLE contents (0, 1, 3, 5, and 7 % w/w SPI) were incorporated into the SPI matrix to investigate the effect of ZBLE on various properties of the obtained films. ZBLE exhibited excellent compatibility with SPI in terms of tensile strength, water barrier properties, UV-light resistance capability, and antioxidant activities. The films with 5 % ZBLE addition presented the most comprehensive performance. The release of total phenolic compounds in two different aqueous food simulants was analyzed. Furthermore, the films were employed to preserve fresh cherry tomatoes at 25 ± 1 °C for 18 days. The changes in the physicochemical properties (mass loss rate, decay rate, and vitamin C content) of cherry tomatoes revealed that the addition of ZBLE to films significantly extended the storage time. Therefore, the SPI/ZBLE composite film has the potential as an eco-friendly active packaging material for food preservation.
Collapse
Affiliation(s)
- Miao Yu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Yuping Hou
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lingli Zheng
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingying Han
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Cobos Á, Díaz O. Impact of Nanoclays Addition on Chickpea ( Cicer arietinum L.) Flour Film Properties. Foods 2023; 13:75. [PMID: 38201103 PMCID: PMC10778780 DOI: 10.3390/foods13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Chickpea flour is an affordable natural blend of starch, proteins, and lipids, which can create films with suitable properties as an eco-friendly packaging material. Nanoclays' incorporation into natural biopolymers enhances the barrier properties of the resulting nanocomposites, so they could improve the properties of flour films. The objective of this work was to assess the influence of three types of nanoclays (halloysite, bentonite, and Cloisite 20A) at two concentrations on the characteristics of chickpea flour films. In general terms, when the lowest dose (5%) was added, no or very slight significant differences with the control were observed in most parameters, except for thermal stability and opacity, which increased, and solubility, which decreased. At the highest concentration (10%), films containing any of the nanoclays demonstrated greater thermal stability, opacity, and rigidity while being less soluble than those without nanofillers. Bentonite exhibited superior film structure distribution compared to other nanoclays. At the highest concentration, it had the most significant impact on modifying the properties of chickpea flour films, increasing their tensile and puncture strengths while decreasing elasticity and water vapor permeability. The incorporation of nanoclays into chickpea flour films could be a useful technique to enhance their properties.
Collapse
Affiliation(s)
| | - Olga Díaz
- Área de Tecnología de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
8
|
Yavari Maroufi L, Shahabi N, Fallah AA, Mahmoudi E, Al-Musawi MH, Ghorbani M. Soy protein isolate/kappa-carrageenan/cellulose nanofibrils composite film incorporated with zenian essential oil-loaded MOFs for food packaging. Int J Biol Macromol 2023; 250:126176. [PMID: 37558021 DOI: 10.1016/j.ijbiomac.2023.126176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Edible films applied in food packaging must possess excellent inhibitory and mechanical properties. Protein-based films exhibit a high capacity for film formation and offer good gas barrier properties. However, they have weak mechanical and water barrier characteristics. The objective of this research was to develop active composite films based on reinforced soy protein isolate (SPI)/Kappa-carrageenan (K) with varying concentrations of bacterial cellulose nanofibrils (BCN). Increasing the BCN concentration improved the morphological, structural, mechanical, water vapor barrier, and moisture content properties. In comparison to the pure SPI film (S), the film with a high BCN concentration demonstrated a significant decrease in WS (22.98 ± 0.78 %), MC (21.72 ± 0.68 %), WVP (1.22 ± 0.14 g mm-1 S-1 Pa-1 10-10), and EAB (57.77 ± 5.25 %) properties. It should be emphasized that there was no significant alteration in the physicomechanical properties of the optimal film (SKB0.75) containing Zenian-loaded metal-organic frameworks (ZM). However, it substantially enhanced the thermal stability of this film, which can be attributed to the strong interfacial interactions between polymer chains and ZM. Furthermore, the ZM films inhibited the growth of pathogenic bacteria and increased the DPPH antioxidant activity. Thus, SKB0.75-ZM2 films can be utilized as practical components in food packaging.
Collapse
Affiliation(s)
- Leila Yavari Maroufi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Elham Mahmoudi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996, Tabriz, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Maleki F, Razmi H, Rashidi MR, Yousefi M, Ramazani S, Ghorbani M, Hojjat-Farsangi M, Shahpasand K. Detection of receptor tyrosine kinase-orphan receptor-2 using an electrochemical immunosensor modified with electrospun nanofibers comprising polyvinylpyrrolidone, soy, and gold nanoparticles. Mikrochim Acta 2023; 190:418. [PMID: 37770707 DOI: 10.1007/s00604-023-06002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
An electrochemical immunosensing platform was developed for the detection of receptor tyrosine kinase-orphan receptor-2 (ROR2) at a glassy carbon electrode (GCE) modified with the electrospun nanofiber containing polyvinylpyrrolidone (PVP), soy, and Au nanoparticles (AuNPs). The PVP/soy/AuNP nanofiber exhibited good electrochemical behavior due to synergistic effects between PVP, soy, and AuNPs. The PVP/soy in the modified film provided good mechanical strength, high porosity, flexible structures, and high specific surface area. On the other hand, the presence of AuNPs effectively improved conductivity, as well as the immobilization of anti-ROR2 on the modified GCE, leading to enhanced sensitivity. Various characterization approaches such as FE-SEM, FTIR, and EDS were used for investigating the morphological and structural features, and the elemental composition. The designed immunosensor performance was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Under optimum conditions with a working potential range from -0.2 to 0.6 V (vs. SCE), sensitivity, linear range (LR), limit of detection (LOD), and correlation coefficient (R2) were acquired at 122.26 μA/cm2 dec, 0.01-1000 pg/mL, 3.39 fg/mL, and 0.9974, respectively. Furthermore, the determination of ROR2 in human plasma samples using the designed immunosensing platform was examined and exhibited satisfactory results including good selectivity against other proteins, reproducibility, and cyclic stability.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | | | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramazani
- Faculty of Textile Engineering, Urmia University of Technology, Urmia, 5716693188, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164, Stockholm, Sweden
| | - Kourosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| |
Collapse
|
10
|
Bezerra FWF, Silva JDME, Fontanari GG, de Oliveira JAR, Rai M, Chisté RC, Martins LHDS. Sustainable Applications of Nanopropolis to Combat Foodborne Illnesses. Molecules 2023; 28:6785. [PMID: 37836629 PMCID: PMC10574570 DOI: 10.3390/molecules28196785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Propolis has numerous biological properties and technological potential, but its low solubility in water makes its use quite difficult. With the advent of nanotechnology, better formulations with propolis, such as nanopropolis, can be achieved to improve its properties. Nanopropolis is a natural nanomaterial with several applications, including in the maintenance of food quality. Food safety is a global public health concern since food matrices are highly susceptible to contamination of various natures, leading to food loss and transmission of harmful foodborne illness. Due to their smaller size, propolis nanoparticles are more readily absorbed by the body and have higher antibacterial and antifungal activities than common propolis. This review aims to understand whether using propolis with nanotechnology can help preserve food and prevent foodborne illness. Nanotechnology applied to propolis formulations proved to be effective against pathogenic microorganisms of industrial interest, making it possible to solve problems of outbreaks that can occur through food.
Collapse
Affiliation(s)
- Fernanda Wariss Figueiredo Bezerra
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (J.d.M.e.S.); (R.C.C.); (L.H.d.S.M.)
| | - Jonilson de Melo e Silva
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (J.d.M.e.S.); (R.C.C.); (L.H.d.S.M.)
| | | | | | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati 444602, India;
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (J.d.M.e.S.); (R.C.C.); (L.H.d.S.M.)
| | - Luiza Helena da Silva Martins
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (J.d.M.e.S.); (R.C.C.); (L.H.d.S.M.)
- Instituto de Saúde e Produção Animal, Universidade Federal Rural da Amazônia, Belém 66077-530, Brazil;
| |
Collapse
|
11
|
Da Rocha J, Mustafa SK, Jagnandan A, Ahmad MA, Rebezov M, Shariati MA, Krebs de Souza C. Development of active and biodegradable film of ternary-based for food application. POTRAVINARSTVO 2023. [DOI: 10.5219/1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The effectiveness of plastic packaging in protecting food is quite appreciable, but its non-biodegradable characteristic raises concerns about environmental impacts. This has drawn attention to the development of alternative materials for food packaging from bio-based polymers. Chitosan, a polysaccharide with biodegradable, biocompatible, and non-toxic properties, is widely used in the formulation of food films. The objective of this work was to create a biodegradable and sustainable chitosan-based film whose active and intelligent action is obtained from red cabbage anthocyanins and the addition of propolis. The edible film’s thickness and total polyphenol content were 61.0 ±0.1μm and 20.08 ±0.5 mgAG g-1, respectively. The content of phenolic compounds and the biodegradation showed significant results (p <0.05), besides the good thermal stability to 200 °C and transparency. The proposed formulation developed an edible, biodegradable, and active (antioxidant) film with interesting heat-sealing resistance, moisture barrier and gas transfer, which contributes to increasing food shelf life.
Collapse
|