1
|
Bahadori Zade M, Abdollahi S, Raoufi Z, Zare Asl H. Synergistic antibacterial and wound healing effects of chitosan nanofibers with ZnO nanoparticles and dual antibiotics. Int J Pharm 2024; 666:124767. [PMID: 39332456 DOI: 10.1016/j.ijpharm.2024.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing. The hydrogels were developed for the delivery of the amikacin and cefepime antibiotics, along with zinc oxide nanoparticles that were applied to an electrospun layer. Amikacin is a highly effective aminoglycoside antibiotic, particularly for hospital-acquired infections, but its use is limited due to its toxicity. By utilizing it in low concentrations in the form of nanofibers and combining it with cefepime, which exhibits synergistic effects, enhanced efficacy against bacterial pathogens is achieved while potentially minimizing cytotoxicity compared to individual antibiotics. This dressing demonstrated efficient drug release, flexibility, and good swelling properties, indicating its suitable mechanical properties for therapeutic applications. After applying the biocompatible hydrogel to wounds, a significant acceleration in wound closure was observed within 14 days compared to the control group. Furthermore, the notable antibiotic and anti-inflammatory properties underscore its effectiveness in wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Mona Bahadori Zade
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
2
|
Feng S, Peng X, Deng Y, Luo Y, Shi S, Wei X, Pu X, Yu X. Biomimetic Nanozyme-Decorated Smart Hydrogel for Promoting Chronic Refractory Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59862-59879. [PMID: 39441846 DOI: 10.1021/acsami.4c13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chronic refractory wounds have become a serious threat to human health and are characterized by prolonged inflammation, recurrent bacterial infections, and elevated ROS levels. However, current therapeutic strategies usually target a unilateral healing function and are unable to tackle the complexity and sensitivity of chronic refractory wound healing. This study fabricated a biomimetic nanozyme based on rhein (Cu-rhein NSs), which effectively mimics the activity of superoxide dismutase (SOD) for scavenging various free radicals. Additionally, zinc oxide microspheres (ZnO MSs) were prepared to enhance the antibacterial activity and mechanical properties of the modified hydrogel. Cu-rhein NSs and ZnO MSs were comodified onto an extracellular matrix-mimetic dual-network smart hydrogel constructed from oxidized sodium alginate, gelatin, and borax via dynamic borate and Schiff base bonds. The smart hydrogel presented the good biocompatibility and targeted the unique acidic microenvironment with high oxidative stress of chronic refractory wounds, intelligently releasing bionic nanozymes to effectively eliminate bacteria, reduce inflammatory responses, and scavenge multiple free radicals for reducing ROS. In vivo experiments on the rat model based on diabetic infection showed that the smart hydrogel could effectively eliminate bacteria, promote vascular regeneration and collagen deposition, reduce inflammatory response, and accelerate the healing of diabetic-infected wounds (almost complete healing within 14 days). The advantages of an intelligent, biomimetic tissue regeneration cascade management strategy against diabetic infected wound healing are highlighted.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Xu S, Jiang C, Yu T, Chen K. A multi-purpose dressing based on resveratrol-loaded ionic liquids/gelatin methacryloyl hydrogel for enhancing diabetic wound healing. Int J Biol Macromol 2024:136773. [PMID: 39442835 DOI: 10.1016/j.ijbiomac.2024.136773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Diabetic wound (DW) is a multifaceted challenge, characterized by persistent bacterial infections and compromised angiogenesis. To address these issues and enhance DW healing, we developed a novel strategy using a photo-crosslinked hydrogel system composed of ionic liquids (ILs) and gelatin methacryloyl (GelMA) loaded with resveratrol (Res). The ILs/GelMA hydrogel was fabricated via a simple photo-crosslinking process, resulting in desirable mechanical properties, biocompatibility, and controlled release kinetics. Res was incorporated into the hydrogel matrix (ILs/GelMA@Res) to ensure sustained release, facilitating angiogenesis and accelerating wound healing. In vitro studies demonstrated that the ILs/GelMA@Res hydrogel exhibited potent antibacterial activity against Staphylococcus aureus and Escherichia coli, inhibiting bacterial growth and biofilm formation. Furthermore, the sustained release of Res from the hydrogel promoted angiogenesis by activating the PI3K/AKT signaling pathways associated with VEGF and FGF, enhancing endothelial cell proliferation, migration, and tube formation. In a DW mice model, the ILs/GelMA@Res hydrogel demonstrated accelerated wound closure, reduced inflammation, and robust neovascularization. This multifunctional hydrogel-based delivery system holds considerable potential for clinical translation, offering a safe and effective treatment modality for diabetic patients with chronic wounds.
Collapse
Affiliation(s)
- Shaochen Xu
- Department of Bone and Joint and Sports Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, China
| | - Chao Jiang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine & Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), China.
| | - Kai Chen
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, China.
| |
Collapse
|
4
|
Lu J, Yu C, Du K, Chen S, Huang S. Targeted delivery of cisplatin magnetic nanoparticles for diagnosis and treatment of nasopharyngeal carcinoma. Colloids Surf B Biointerfaces 2024; 245:114252. [PMID: 39317040 DOI: 10.1016/j.colsurfb.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Rapid advances in nanotechnology are paving the way for innovative breakthroughs in overcoming the current limitations in the clinical treatment of cancer and other prevalent diseases plaguing mankind. Magnetic nanoparticles composed of iron oxide (Fe3O4) are a novel class of nanoparticles that are receiving increasing attention in the field of cancer therapy. To address the inherent limitations, bare Fe3O4 can be functionalized, polymerized, assembled, or combined with other functional materials to produce a range of smart nanoplatforms suitable for tumor therapy. In this paper, we present a unique multifunctional therapeutic nanoplatform centered on aldehyde-oxidized sodium alginate-stabilized iron oxide nanoparticles (NPs) designed for T2-weighted magnetic resonance (MR) imaging. Sodium alginate oxide and ferric oxide nanoparticles were prepared respectively, and the two particles were mixed in a certain molar ratio to form a complex, which was coupled to target polypeptide GE11 by Schiff base reaction, and finally supported by cisplatin through coordination complexation. The prepared magnetic nanoparticles (hereinafter referred to as GE11-CDDP-ASA@Fe3O4) have an average diameter of 152.9 nm, and have good colloidal stability and cytocompatibility. The distinctive structure and composition of GE11-CDDP-ASA@Fe3O4 contribute to its excellent MRI imaging performance, positioning it as a nano platform suitable for enhancing the efficacy of combination therapy in tumor treatment. This is of great significance for translational nanomedicine applications.
Collapse
Affiliation(s)
- Jing Lu
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Chaosheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Du
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuaijun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | | |
Collapse
|
5
|
Bibire T, Dănilă R, Yilmaz CN, Verestiuc L, Nacu I, Ursu RG, Ghiciuc CM. In Vitro Biological Evaluation of an Alginate-Based Hydrogel Loaded with Rifampicin for Wound Care. Pharmaceuticals (Basel) 2024; 17:943. [PMID: 39065793 PMCID: PMC11280071 DOI: 10.3390/ph17070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
We report a biocompatible hydrogel dressing based on sodium alginate-grafted poly(N-vinylcaprolactam) prepared by encapsulation of Rifampicin as an antimicrobial drug and stabilizing the matrix through the repeated freeze-thawing method. The hydrogel structure and polymer-drug compatibility were confirmed by FTIR, and a series of hydrogen-bond-based interactions between alginate and Rifampicin were identified. A concentration of 0.69% Rifampicin was found in the polymeric matrix using HPLC analysis and spectrophotometric UV-Vis methods. The hydrogel's morphology was evaluated by scanning electron microscopy, and various sizes and shapes of pores, ranging from almost spherical geometries to irregular ones, with a smooth surface of the pore walls and high interconnectivity in the presence of the drug, were identified. The hydrogels are bioadhesive, and the adhesion strength increased after Rifampicin was encapsulated into the polymeric matrix, which suggests that these compositions are suitable for wound dressings. Antimicrobial activity against S. aureus and MRSA, with an increased effect in the presence of the drug, was also found in the newly prepared hydrogels. In vitro biological evaluation demonstrated the cytocompatibility of the hydrogels and their ability to stimulate cell multiplication and mutual cell communication. The in vitro scratch assay demonstrated the drug-loaded alginate-grafted poly(N-vinylcaprolactam) hydrogel's ability to stimulate cell migration and wound closure. All of these results suggest that the prepared hydrogels can be used as antimicrobial materials for wound healing and care applications.
Collapse
Affiliation(s)
- Tudor Bibire
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania;
| | - Radu Dănilă
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania;
- Department of Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
| | - Cătălina Natalia Yilmaz
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylül University, Kültür Mah. Cumhuriyet Bulv. No:144 Alsancak, 35210 Izmir, Turkey
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ramona Gabriela Ursu
- Department of Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Clinical Pharmacology and Algeziology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- St. Maria Clinical Emergency Hospital for Children, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
6
|
Li H, Yang Y, Mu M, Feng C, Chuan D, Ren Y, Wang X, Fan R, Yan J, Guo G. MXene-based polysaccharide aerogel with multifunctional enduring antimicrobial effects for infected wound healing. Int J Biol Macromol 2024; 261:129238. [PMID: 38278388 DOI: 10.1016/j.ijbiomac.2024.129238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Wound infection is a predominant etiological factor contributing to delayed wound healing in open wounds. Hence, it holds paramount clinical significance to devise wound dressings endowed with superior antibacterial properties. In this study, a Schiff base-crosslinked aerogel comprising sodium alginate oxide (OSA), carboxymethyl chitosan (CMCS), and Nb2C@Ag/PDA (NAP) was developed. The resultant OSA/CMCS-Nb2C@Ag/PDA (OC/NAP) composite aerogel exhibited commendable attributes including exceptional swelling characteristics, porosity, biocompatibility, and sustained antimicrobial efficacy. In vitro antimicrobial assays unequivocally demonstrated that the OC/NAP composite aerogel maintained nearly 100 % inhibition of Staphylococcus aureus and Escherichia coli under an 808 nm laser even after 25 h. Crucially, the outcomes of in vivo infected wound healing experiments demonstrated that the wound healing rate of the OC/NAP composite aerogel group reached approximately 100 % within a span of 14 days, which was significantly greater than that of the blank control group. In vitro and in vivo hemostatic experiments also revealed that the composite aerogel had excellent hemostatic properties. The results of this study demonstrate the remarkable potential of OC/NAP aerogel as a multifunctional clinical wound dressing, especially for infected wounds.
Collapse
Affiliation(s)
- Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Di Chuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangmei Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Wang
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Zayed HS, Saleh S, Omar AE, Saleh AK, Salama A, Tolba E. Development of collagen-chitosan dressing gel functionalized with propolis-zinc oxide nanoarchitectonics to accelerate wound healing. Int J Biol Macromol 2024; 261:129665. [PMID: 38266853 DOI: 10.1016/j.ijbiomac.2024.129665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Using an in situ sol-gel technique, new nanoarchitectonics of propolis loaded zinc oxide nanoarchitectonics (PP/ZnO-NPs) were developed in order to improve the in vivo outcomes of collagen-chitosan gel in wounded rats. The obtained nanoarchitectonics were fully characterized. The XRD results indicate the presence of a Zincite phase for ZnO-NPs and Zincite accompanied by a minor amount of zinc hydroxide for PP/ZnO-NPs samples. While the TEM findings illustrate the transfer of the ZnO-NPs from agglomerated spheres with an average particle size of 230 ± 29 nm to needle-like NPs of 323 ± 173 nm length (PP1/ZnO-NPs) and to a sheet-like NPs of 500 ± 173 nm diameter (PP2/ZnO-NPs). In addition, the incorporation of PP results in an increase in the surface negativity of ZnO-NPs to -31.4 ± 6.4 mV for PP2/ZnO-NPs. The antimicrobial activities of the nanocomposite gel loaded with 10%PP1/ZnO-NPs (G6) revealed the highest inhibition zone against E. coli (26 ± 2.31 mm). Remarkably, the in vivo outcomes showed that the nanocomposite gel (G6) has exceptional collagen deposition, quick wound closure rates, and re-epithelization. The outcomes demonstrate the nanocomposite gel encouraging biological properties for the treatment of damaged and infected wounds.
Collapse
Affiliation(s)
- Heba S Zayed
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Safaa Saleh
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Areg E Omar
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
8
|
Liu M, Wang X, Sun B, Wang H, Mo X, El-Newehy M, Abdulhameed MM, Yao H, Liang C, Wu J. Electrospun membranes chelated by metal magnesium ions enhance pro-angiogenic activity and promote diabetic wound healing. Int J Biol Macromol 2024; 259:129283. [PMID: 38199538 DOI: 10.1016/j.ijbiomac.2024.129283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Diabetic wounds, resulting from skin atrophy due to localized ischemia and hypoxia in diabetic patients, lead to chronic pathological inflammation and delayed healing. Using electrospinning technology, we developed magnesium ion-chelated nanofiber membranes to explore their efficacy in antibacterial, anti-inflammatory, and angiogenic applications for wound healing. These membranes are flexible and elastic, resembling native skin tissue, and possess good hydrophilicity for comfortable wound bed contact. The mechanical properties of nanofiber membranes are enhanced by the chelation of magnesium ions (Mg2+), which also facilitates a long-term slow release of Mg2+. The cytocompatibility of the nanofibrous membranes is influenced by their Mg2+ content: lower levels encourage the proliferation of fibroblasts, endothelial cells, and macrophages, while higher levels are inhibitory. In a diabetic rat model, magnesium ion-chelated nanofibrous membranes effectively reduced early wound inflammation and notably accelerated wound healing. This study highlights the potential of magnesium ion-chelated nanofiber membranes in treating diabetic wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haochen Yao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China.
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
9
|
Schadte P, Rademacher F, Andresen G, Hellfritzsch M, Qiu H, Maschkowitz G, Gläser R, Heinemann N, Drücke D, Fickenscher H, Scherließ R, Harder J, Adelung R, Siebert L. 3D-printed wound dressing platform for protein administration based on alginate and zinc oxide tetrapods. NANO CONVERGENCE 2023; 10:53. [PMID: 37971675 PMCID: PMC10654273 DOI: 10.1186/s40580-023-00401-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.
Collapse
Affiliation(s)
- Philipp Schadte
- Functional Nanomaterials, Department for Material Science, Kiel University, Kiel, Germany
| | - Franziska Rademacher
- Department of Dermatology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gerrit Andresen
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marie Hellfritzsch
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Haoyi Qiu
- Functional Nanomaterials, Department for Material Science, Kiel University, Kiel, Germany
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Nina Heinemann
- Department of Dermatology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniel Drücke
- Department of Reconstructive Surgery, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
- Kiel Nano, Surface and Interface Science - KiNSIS, Kiel University, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department for Material Science, Kiel University, Kiel, Germany.
- Kiel Nano, Surface and Interface Science - KiNSIS, Kiel University, Kiel, Germany.
| | - Leonard Siebert
- Functional Nanomaterials, Department for Material Science, Kiel University, Kiel, Germany.
- Kiel Nano, Surface and Interface Science - KiNSIS, Kiel University, Kiel, Germany.
| |
Collapse
|
10
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Ge W, Gao Y, He L, Zeng Y, Liu J, Yu Y, Xie X, Xu RA. Combination therapy using multifunctional dissolvable hyaluronic acid microneedles for oral ulcers. Int J Biol Macromol 2023; 251:126333. [PMID: 37586633 DOI: 10.1016/j.ijbiomac.2023.126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Oral ulcers are common in the oral mucosa. Frequent occurrences of oral ulcers commonly afflict patients, seriously impacting their daily life. Treatments with good anti-inflammatory and antibacterial properties are important for promoting the healing of oral ulcers. In this study, a multifunctional, soluble hyaluronic acid (HA) microneedle (MN) patch was prepared to promote oral ulcer healing. The tip layer of the MN patch was loaded with triamcinolone acetonide (TA) and epidermal growth factor (EGF) to inhibit inflammation and promote angiogenesis. Zeolitic imidazolate framework-8 (ZIF-8) was loaded onto the base layer of the MN patch, which effectively released Zn2+ to mediate antibacterial effects. In addition, HA exerts a protective effect on the mucous membrane. Owing to these properties, the multifunctional MN patches were found to have good anti-inflammatory, antibacterial, and tissue-healing abilities, indicating that the multifunctional MN patch design successfully promoted the healing of oral ulcers.
Collapse
Affiliation(s)
- Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Liming He
- Changsha Stomatological Hospital, Changsha 410005, PR China
| | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Junhui Liu
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410000, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
12
|
Metwally WM, El-Habashy SE, El-Hosseiny LS, Essawy MM, Eltaher HM, El-Khordagui LK. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing. Biofabrication 2023; 16:015001. [PMID: 37751750 DOI: 10.1088/1758-5090/acfd60] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
There is a constant demand for novel materials/biomedical devices to accelerate the healing of hard-to-heal wounds. Herein, an innovative 3D-printed bioinspired construct was developed as an antibacterial/regenerative scaffold for diabetic wound healing. Hyaluronic/chitosan (HA/CS) ink was used to fabricate a bilayer scaffold comprising a dense plain hydrogel layer topping an antibacterial/regenerative nanofibrous layer obtained by incorporating the hydrogel with polylactic acid nanofibrous microspheres (MS). These were embedded with nano ZnO (ZNP) or didecyldimethylammonium bromide (DDAB)-treated ZNP (D-ZNP) to generate the antibacterial/healing nano/micro hybrid biomaterials, Z-MS@scaffold and DZ-MS@scaffold. Plain and composite scaffolds incorporating blank MS (blank MS@scaffold) or MS-free ZNP@scaffold and D-ZNP@scaffold were used for comparison. 3D printed bilayer constructs with customizable porosity were obtained as verified by SEM. The DZ-MS@scaffold exhibited the largest total pore area as well as the highest water-uptake capacity andin vitroantibacterial activity. Treatment ofStaphylococcus aureus-infected full thickness diabetic wounds in rats indicated superiority of DZ-MS@scaffold as evidenced by multiple assessments. The scaffold afforded 95% wound-closure, infection suppression, effective regulation of healing-associated biomarkers as well as regeneration of skin structure in 14 d. On the other hand, healing of non-diabetic acute wounds was effectively accelerated by the simpler less porous Z-MS@scaffold. Information is provided for the first-time on the 3D printing of nanofibrous scaffolds using non-electrospun injectable bioactive nano/micro particulate constructs, an innovative ZNP-functionalized 3D-printed formulation and the distinct bioactivity of D-ZNP as a powerful antibacterial/wound healing promotor. In addition, findings underscored the crucial role of nanofibrous-MS carrier in enhancing the physicochemical, antibacterial, and wound regenerative properties of DDAB-nano ZnO. In conclusion, innovative 3D-printed DZ-MS@scaffold merging the MS-boosted multiple functionalities of ZNP and DDAB, the structural characteristics of nanofibrous MS in addition to those of the 3D-printed bilayer scaffold, provide a versatile bioactive material platform for diabetic wound healing and other biomedical applications.
Collapse
Affiliation(s)
- Walaa M Metwally
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lobna S El-Hosseiny
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria 21500, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
13
|
Ju Y, Zeng H, Ye X, Dai M, Fang B, Liu L. Zn 2+ incorporated composite polysaccharide microspheres for sustained growth factor release and wound healing. Mater Today Bio 2023; 22:100739. [PMID: 37521525 PMCID: PMC10374596 DOI: 10.1016/j.mtbio.2023.100739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The development of new wound dressings has always been an issue of great clinical importance and research promise. In this study, we designed a novel double cross-linked polysaccharide hydrogel microspheres based on alginate (ALG) and hyaluronic acid methacrylate (HAMA) from gas-assisted microfluidics for wound healing. The microspheres from gas-assisted microfluidics showed an uniform size and good microsphere morphology. Moreover, this composite polysaccharide hydrogel microspheres were constructed by harnessing the fact that zinc ions (Zn2+) can cross-link with ALG as well as histidine-tagged vascular endothelial growth (His-VEGF) to achieve long-term His-VEGF release, thus promoting angiogenesis and wound healing. Meanwhile, Zn2+, as an important trace element, can exert antibacterial and anti-inflammatory effects, reshaping the trauma microenvironment. In addition, photo cross-linked HAMA was introduced into the microspheres to further improve its mechanical properties and drug release ability. In summary, this novel Zn2+ composite polysaccharide hydrogel microspheres loaded with His-VEGF based on a dual cross-linked strategy exhibited synergistic antimicrobial and angiogenic effects in promoting wound healing.
Collapse
Affiliation(s)
- Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
14
|
Abedini AA, Pircheraghi G, Kaviani A, Hosseini S. Exploration of curcumin-incorporated dual anionic alginate-quince seed gum films for transdermal drug delivery. Int J Biol Macromol 2023; 248:125798. [PMID: 37442508 DOI: 10.1016/j.ijbiomac.2023.125798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The idea of combining bioextracted polymers for wound healing applications has emerged in hopes of developing highly flexible and mechanically stable hydrogel films with controlled drug delivery, biocompatibility, and high collagen deposition. In the present research, polysaccharide films composed of Alginate and Quince Seed Gum (QSG) were fabricated by ionic crosslinking, and their potential for curcumin delivery and wound healing were examined. In this regard, microstructure, mechanical properties, thermal stability, physiochemical properties, and biocompatibility of films with three different QSG amounts (25 %, 50 %, and 75 %) were studied. Because of the optimum properties of 25 % QSG films like better transparency (Opacity = 6.1 %), higher flexibility (Elongation = 28.9 %), less water solubility (Water solubility = 66.6 %), proper absorbance (Swelling degree = >600 %), and suitable biocompatibility (Cell viability = >85 %), they were used for drug delivery examination. Curcumin administration through films with and without stearic acid modification was investigated. Stearic Acid (SA) modified samples demonstrated superior compatibility between hydrophobic drug and hydrophilic film. Stearic acid-modified film could prolong the curcumin release up to 48 h and showed increased collagen synthesis and TGF-β expression, making it an excellent candidate for transdermal drug delivery and wound healing applications.
Collapse
Affiliation(s)
- Amir Abbas Abedini
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
| | - Gholamreza Pircheraghi
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran.
| | - Alireza Kaviani
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran.
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, 13169-43551 Tehran, Iran
| |
Collapse
|
15
|
Chen Y, Zhang Y, Chang L, Sun W, Duan W, Qin J. Mussel-inspired self-healing hydrogel form pectin and cellulose for hemostasis and diabetic wound repairing. Int J Biol Macromol 2023; 246:125644. [PMID: 37394213 DOI: 10.1016/j.ijbiomac.2023.125644] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Diabetic wound is considered as a kind of chronic wound prone to infection and difficult to repair due to high glucose level in the blood of patients. In this research, a biodegradable self-healing hydrogel with mussel inspired bioadhesion and anti-oxidation properties is fabricated based on Schiff-base cross-linking. The hydrogel was designed from dopamine coupled pectin hydrazide (Pec-DH) and oxidized carboxymethyl cellulose (DCMC) for mEGF loading as a diabetic wound repair dressing. The Pectin and CMC as natural feedstock endowed the hydrogel with biodegradability to avoid possible side effects, while the coupled catechol structure could enhance the tissue adhesion of the hydrogel for hemostasis. The results showed the Pec-DH/DCMC hydrogel formed fast and can cover irregular wounds with good sealing effect. The catechol structure also improved the reactive oxygen species (ROS) scavenging ability of the hydrogel, which can eliminate the negative effect of ROS during wound healing. The in vivo diabetic wound healing experiment revealed the hydrogel as mEGF loading vehicle greatly enhanced the diabetic wound repairing rate in mice model. As a result, the Pec-DH/DCMC hydrogel could show advantages as EGF carrier in wound healing applications.
Collapse
Affiliation(s)
- Yanai Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Weichen Sun
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenhao Duan
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|