1
|
Ding W, Mo Z, Qi J, Wang M, Zou J, Wang K, Gong D, Zhao Y, Miao H, Zhao Z. Luminescent iron phthalocyanine organic polymer nanosheets with space-separated dual-active sites for the detection and photocatalytic reduction of Cr(Ⅵ) from wastewater. ENVIRONMENTAL RESEARCH 2025; 264:120282. [PMID: 39505132 DOI: 10.1016/j.envres.2024.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cr(Ⅵ) residues in livestock and poultry wastewater are a rising concern for human health and biotic environments. For the removal of Cr(Ⅵ), its simultaneous reduction and adsorption represents a sustainable and efficient strategy. Herein, iron nodes on covalently bonded two-dimensional phthalocyanine organic polymer (PcOP-Fe) nanosheets with space-separated dual-active sites are developed for the simultaneous detection and removal of Cr(VI) from wastewater. In the FeN4 structure of PcOP-Fe nanosheets, Fe acts as an electron capture center, effectively facilitating the accumulation of photogenerated electrons and transferring them to Cr(VI), thereby achieving its photocatalytic reduction. Meanwhile, pyrrolic nitrogen provides excellent adsorption sites, enabling the adsorption of Cr(III) or Cr(0). Fe accumulates the photogenerated electrons from pyrrole N and transfer them to Cr(Ⅵ). The formation of N-Cr(Ⅲ) bonds causes a space-separation between Cr(Ⅵ) and Cr(III). In addition, PcOP-Fe can be used for a Cr(Ⅵ) detection agent. The photoluminescence intensity decreases linearly with increasing Cr(Ⅵ) concentration from 80 μM to 2 mM, with a limit of detection of 0.18 μM. The PcOP-Fe nanosheets exhibit good Cr(Ⅵ) detection and reduction performance in livestock and poultry wastewater, suggesting their suitability for practical sensing applications. Thus, the PcOP-Fe nanosheets with space-separated dual-active sites are promising for the simultaneous detection and removal of Cr(Ⅵ) in water treatment processes.
Collapse
Affiliation(s)
- Wenfei Ding
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jia Qi
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Mengying Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Junyu Zou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kuo Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Daxiang Gong
- Chongqing Tengda Animal Husbandry Co., Ltd., Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hong Miao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Qi X, Xiong X, Cai H, Zhang X, Ma Q, Tan H, Guo X, Lv H. Carbon dots-loaded cellulose nanofibrils hydrogel incorporating Bi 2O 3/BiOCOOH for effective adsorption and photocatalytic degradation of lignin. Carbohydr Polym 2024; 346:122601. [PMID: 39245520 DOI: 10.1016/j.carbpol.2024.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
A novel photocatalytic adsorbent, a cellulose nanofibrils based hydrogel incorporating carbon dots and Bi2O3/BiOCOOH (designated as CCHBi), was developed to address lignin pollution. CCHBi exhibited an adsorption capacity of 435.0 mg/g, 8.9 times greater than that of commercial activated carbon. This enhanced adsorption performance was attributed to the 3D porous structure constructed using cellulose nanofibrils (CNs), which increased the specific surface area and provided additional sorption sites. Adsorption and photocatalytic experiments showed that CCHBi had a photocatalytic degradation rate constant of 0.0140 min-1, 3.1 times higher than that of Bi2O3/BiOCOOH. The superior photocatalytic performance of CCHBi was due to the Z-scheme photocatalytic system constructed by carbon dots-loaded cellulose nanofibrils and Bi2O3/BiOCOOH, which facilitated the separation of photoinduced charge carriers. Additionally, the stability of CCHBi was confirmed through consecutive cycles of adsorption and photocatalysis, maintaining a removal efficiency of 85 % after ten cycles. The enhanced stability was due to the 3D porous structure constructed by CNs, which safeguarded the Bi2O3/BiOCOOH. This study validates the potential of CCHBi for high-performance lignin removal and promotes the application of CNs in developing new photocatalytic adsorbents.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiang Xiong
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haoxuan Cai
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiying Lv
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Amalia FR, Wang L, Bielan Z, Markowska-Szczupak A, Wei Z, Kowalska E. Gels in Heterogeneous Photocatalysis: Past, Present, and Future. Gels 2024; 10:810. [PMID: 39727568 DOI: 10.3390/gels10120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed. Accordingly, the application of gels, either as a photocatalytic material or as its support, might be a good solution. In this review, various propositions of gel-based photocatalysts have been presented and discussed. Moreover, an easy nanoarchitecture design of gel-based structures enables fundamental studies, e.g., on mechanism clarifications. It might be concluded that gels with their unique properties, i.e., low density, high specific surface area, great porosity, and low-cost preparation, are highly prospective for solar-energy-based reactions, water treatment, photodynamic cancer therapies, and fundamental research.
Collapse
Affiliation(s)
| | - Lei Wang
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Zuzanna Bielan
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, 71-065 Szczecin, Poland
| | - Zhishun Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Ewa Kowalska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Liu W, Tian Z, Wang C, Qian F, Jiang D, Chen A, Li R. Synergic action of bamboo-cellulose-supported hydrogen-bonded nano-AgBr for robust photocatalysis. Int J Biol Macromol 2024; 287:138364. [PMID: 39657885 DOI: 10.1016/j.ijbiomac.2024.138364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
A novel semiconductor photocatalyst was developed using bamboo cellulose fibers (BCFs) embedded with nano-AgBr (AgBr@BCFs) via a simple and rapid method. BCFs prevented the agglomeration of AgBr and provided numerous active reaction sites as a dispersant and structural support. The photocatalytic activity of AgBr@BCFs in removing organic pollutants was investigated and the endogenous factors leading to the high activity were analyzed through a combination of a series of experiments, characterizations and theoretical calculations. We propose that the efficient photocatalytic performance of AgBr@BCFs was attributed to the interface integration facilitated by hydrogen bonds and robust electronic interactions. The interface demonstrated a significantly negative reduction potential (-0.57 eV), enhancing carrier transport efficiency and inhibiting the recombination of photogenerated electron-hole pairs. Compared to the intrinsic activity of AgBr, AgBr@BCFs exhibits 7.2 times higher performance for Rhodamine B and 8.6 times greater intensity for tetracycline (TC). Additionally, the applicability of the photocatalyst across various pH ranges, photocorrosion resistance, and recyclability were evaluated. The mechanism of the photocatalytic process revealed that the synergistic bifunctionality of high adsorption rate and strong degradation activity is the primary reason for the high activity. BCFs-based semiconductor material can be recycled efficiently, which is a promising photocatalyst for the purification of organic sewage.
Collapse
Affiliation(s)
- Weichi Liu
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Zhen Tian
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chenyang Wang
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Fangming Qian
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Dongmei Jiang
- Engineering Research center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - An Chen
- Engineering Research center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ruyan Li
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| |
Collapse
|
5
|
Fang Q, Chen L, Fu Q, Chen Y, He J, Jiang L, Yan Z, Wang J. A Rod-like Bi 2O 3 Photocatalyst Derived from Bi-Based MOFs for the Efficient Adsorption and Catalytic Reduction of Cr(VI). Int J Mol Sci 2024; 25:13052. [PMID: 39684763 DOI: 10.3390/ijms252313052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Heavy metal ion pollution poses a serious threat to the natural environment and human health. Photoreduction through Bi-based photocatalysts is regarded as an advanced green technology for solving environmental problems. However, their photocatalytic activity is limited by the rapid recombination of photogenerated e- and h+ pairs and a low photo-quantum efficiency. In this work, an optimal precursor of Bi-based MOFs was identified by using different solvents, and rod-like Bi2O3 materials were derived by in situ oxidation of Bi atoms in the precursor. The adsorption and photocatalytic reduction efficiency of the prepared Bi2O3 materials for Cr(VI) were evaluated under visible light irradiation. The results showed that the prepared materials had a large specific surface area and enhanced visible light absorption. Bi2O3(DMF/MeOH-3)-400 had a large specific surface area and many active adsorption sites, and it had the highest adsorption of Cr(VI) (49.13%) among the materials. Bi2O3(DMF/MeOH-3)-400 also had the highest photocatalytic reduction efficiency, and it achieved 100% removal of 10 mg·L-1 Cr(VI) within 90 min under light. In addition, the material showed remarkable stability after three consecutive photocatalytic cycles. The enhanced photocatalytic performance was mainly attributed to the fast separation of electron-hole pairs and efficient electron transfer in the MOF-derived materials, which was confirmed by electrochemical tests and PL spectroscopy. Reactive species trapping experiments confirmed that electrons were the main active substances; accordingly, a possible photocatalytic mechanism was proposed. In conclusion, this work provides a new perspective for designing novel photocatalysts that can facilitate the removal of Cr(VI) from water.
Collapse
Affiliation(s)
- Qin Fang
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
| | - Luying Chen
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
| | - Qiucheng Fu
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
| | - Yongjuan Chen
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
| | - Jiao He
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
| | - Liang Jiang
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
- Engineering Institute, Yunnan University, Kunming 650091, China
| | - Zhiying Yan
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
| | - Jiaqiang Wang
- Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China
- School of Materials & Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
6
|
Liu J, Lv S, Mu Y, Tong J, Liu L, He T, Zeng Q, Wei D. Applied research and recent advances in the development of flexible sensing hydrogels from cellulose: A review. Int J Biol Macromol 2024; 281:136100. [PMID: 39448288 DOI: 10.1016/j.ijbiomac.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Flexible wearable smart sensing materials have gained immense momentum, and biomass-based hydrogel sensors for renewable and biologically safe wearable sensors have attracted significant attention in order to meet the growing demand for sustainability and ecological friendliness. Cellulose has been widely used in the field of biomass-based hydrogel sensing materials, being the most abundant biomass material in nature. This review mainly focuses on the types of cellulose hydrogels, the preparation methods and their applications in smart flexible sensing materials. The structure-functional properties-application relationship of cellulose hydrogels and the applications of various cellulose hydrogels in flexible sensing are described in detail. Then it focuses on the methods and mechanisms of cellulose hydrogel flexible sensors preparation, and then summarizes the research of cellulose hydrogel sensors for different types of stimulus response mechanisms to pressure, pH, biomolecules, ions, temperature, humidity, and light. The applications of cellulose hydrogels as flexible sensing materials in biomedical sensing, smart wearable and environmental monitoring are further summarized. Finally, the future development trend of cellulose hydrogels is briefly introduced and the future development of cellulose hydrogel sensing materials is envisioned.
Collapse
Affiliation(s)
- Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Zeng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Shaghaleh H, Alhaj Hamoud Y, Sun Q. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124623. [PMID: 39069244 DOI: 10.1016/j.envpol.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Hydrogel adsorbents are promising tools for reducing heavy metals' bioavailability in contaminated soil. However, their practical feasibility remains limited by the low stability, inefficient removal efficiency, and potential secondary pollution. Optimizing the adsorption operation and the functional properties of hydrogel adsorbents could eliminate this method's drawbacks. Herein, three innovative in-situ remediation strategies for Pb/Cu-contaminated soil were adopted based on the concept of novel TEMPO-cellulose (TO-NFCs)/lignin/acrylamide@MIL-100(Fe) nanocomposite hydrogel adsorbent (NCLMH). Characteristic analyses revealed ideal Pb/Cu adsorption mechanisms by swelling, complexation, electrical attraction, and ion exchange via carboxyl/hydroxyl/carbonyl groups and unsaturated Fe(III) sites on ANCMH besides FeOOH formation. The highest maximum theoretical adsorption capacities of Pb(II) and Cu(II) on ANCMH were 416.39 and 133.98 mg/g, under pH 6.5, governed by pseudo-second-order/Freundlich models. Greenhouse pot experiments with contaminated soils amended with two-depth layers of 0.5% NCLMHs (SA@NCLMH) displayed a decline in Pb and Cu bioavailability up to 85.9% and 74.5% within 45 d. Soil column studies simulating continuous water soil flushing coupled with NCLMH layers, instead of conventional extractant fluids, and connected to NCLMH-sand column as purification unit (CF@NCLMH) achieved higher removal rates for Pb, and Cu of 89.5% and 77.2% within 24 h. Alternatively, conducting multiple-pulse soil flushing mode (MF@NCLMH) gained the highest Pb and Cu removal of 96.5% and 85.4%, as the water flushing-stop flux events allowed adequate water movement/residence period, promoting Pb/Cu desorption-adsorption from soil to NCLMH. Also, the NCLMH-sand column conducting and easy separation of the stable/reusable NCLMHs prevented the potential secondary pollution. Interestingly, the three remediated soils reached the corresponding regulation of the permissible limits for Pb and Cu residential scenarios in medium-to-heavily agricultural polluted soils, alleviating the Pb/Cu bioaccumulation and phytotoxicity symptoms in cultivated wheat, especially after MF@NCLMH treatment. This study introduces promising alternative remediation strategies with high sustainability and feasibility in acidic-to-neutral heavy metal-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qin Sun
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
8
|
Zhang J, Xu H, Zheng Y, Shen Y, Mu C, Wang Y, Niyazi A, He Z, Zhang Z, Zhang L, Xue J. Visible light photocatalytic degradation of oxytetracycline hydrochloride using chitosan-loaded Z-scheme heterostructured material BiOCOOH/O-gC 3N 4. Int J Biol Macromol 2024; 275:133373. [PMID: 38945717 DOI: 10.1016/j.ijbiomac.2024.133373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
In this work, a Z-scheme heterostructured BiOCOOH/O-gC3N4 material was synthesized and immobilized on chitosan (CTS) to obtain the BiOCOOH/O-gC3N4/CTS photocatalytic material for photocatalytic degradation of oxytetracycline hydrochloride (CTC).Our findings indicate that the composite material BiOCOOH/O-gC3N4, as well as the BiOCOOH/O-gC3N4/CTS composite membrane, displayed a significantly higher efficiency in photocatalytic degradation of CTC compared to BiOCOOH alone, owing to the synergistic effect of adsorption and photocatalysis. Following four cycles of use, the composite material retained around 96 % of its initial photocatalytic degradation activity. The addition of CTS in the photocatalytic material resolved issues such as aggregation and difficult recovery commonly encountered with powder materials, thereby facilitating effective collision between the photocatalytic active sites and CTC. Experimental and theoretical calculations provided confirmation that the combination of BiOCOOH and O-gC3N4 effectively enhanced the light absorption capacity and photocatalytic performance. Furthermore, we investigated the influence of environmental factors such as pH value and anions on the photocatalytic degradation experiment, which offers valuable insights for the application of composite catalysts in wastewater treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Haoyang Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yage Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yue Shen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Aili Niyazi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, People's Republic of China
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, People's Republic of China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| |
Collapse
|
9
|
Arif M, Rauf A, Akhter T. A comprehensive review on crosslinked network systems of zinc oxide-organic polymer composites. Int J Biol Macromol 2024; 274:133250. [PMID: 38908628 DOI: 10.1016/j.ijbiomac.2024.133250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In recent years, the synergistic crosslinked networks formed by zinc oxide (ZnO) particles and organic polymers have gained significant attention. This importance is ascribed due to the valuable combination of low band gap containing ZnO particles with responsive behavior containing organic polymers. These properties of both ZnO and organic polymers make a suitable system of crosslinked ZnO-organic polymer composite (CZOPC) for various applications in the fields of biomedicine, catalysis, and environmental perspectives. The literature extensively provided the diverse morphologies and structures of CZOPC, and these architectural structures play a crucial role in determining their efficiency across various applications. Consequently, the careful design of CZOPC shapes tailored to specific purposes has become a focal point. This comprehensive review provides insights into the classifications, synthetic approaches, characterizations, and applications of ZnO particles decorated in organic polymers with crosslinked network. The exploration extends to the adsorption, environmental, catalytic, and biomedical applications of ZnO-organic polymer composites. Adopting a tutorial approach, the review systematically investigates and elucidates the applications of CZOPC with a comprehensive understanding of their diverse capabilities and uses.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
10
|
Fu J, Yap JX, Leo CP, Chang CK. Enhanced photocatalytic regeneration of carboxymethyl cellulose/lignin/ZnO complex hydrogel after methylene blue adsorption. Int J Biol Macromol 2024; 274:133510. [PMID: 38960270 DOI: 10.1016/j.ijbiomac.2024.133510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The biodegradable, nontoxic, and renewable carboxymethyl cellulose (CMC) hydrogel has been developed into a green adsorbent. However, the weak chemical interaction limits its adsorption capability and reusability. This work incorporated lignin with complex structure and ZnO nanoparticles with photocatalytic properties into CMC hydrogel beads to improve the removal of methylene blue (MB) through chemical interaction. Scanning electron microscopic images and Fourier-transform infrared spectra confirmed the compatibility between lignin and ZnO nanoparticles as well as the increment of active sites for dye removal. The MB adsorption on CMC hydrogel beads was more significantly affected by the temperate and initial concentration compared to contact time, pH, and adsorbent dosage. The MB adsorption capacity of CMC hydrogel was improved to 276.79 mg/g after incorporating lignin and ZnO nanoparticles. The adsorption followed the pseudo-second-order kinetic model and Langmuir isotherm model, indicating chemical adsorption. After 6 cycles, the adsorption capacity was reduced by about 15 %. The UV irradiation could recover and improve MB adsorption capacity of CMC hydrogel beads containing ZnO nanoparticles due to the introduction of reactive oxygen species.
Collapse
Affiliation(s)
- Jialin Fu
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| | - Chun Kiat Chang
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
11
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
12
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
13
|
Jian K, Fu L, Zhang Y, Zhang H, Guo X, Zhao X. Microwave synthesis of chitosan-based carbon dots for Al 3+ detection and biological application. Int J Biol Macromol 2024; 260:129413. [PMID: 38262835 DOI: 10.1016/j.ijbiomac.2024.129413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Yellow fluorescent carbon dots (Y-CDs) were prepared via microwave method using chitosan and o-phenylenediamine as the main raw materials. The obtained Y-CDs possesses good water solubility, excellent biocompatibility and luminous stability. During the microwave pyrolysis carbonization process, the surface of Y-CDs was modified with the functional groups such as amino and carboxyl, which can bind to Al3+ by forming complexes, further improving the selectivity and sensitivity of the Al3+ detection. And the fluorescence of Y-CDs was quenched by Al3+ by static quenching process. More importantly, Y-CDs as fluorescent sensor was further applied for the determination of Al3+ in the real water samples with high reliability and accuracy. In addition, Y-CDs present potential application in biological imaging. The cultivated zebrafish embryos with Y-CDs displayed clearly in vivo uptake and metabolic fluorescence images, further confirming its low toxicity and excellent biocompatibility.
Collapse
Affiliation(s)
- Ke Jian
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Liming Fu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yujie Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangjun Guo
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xihui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-fibers and Eco-textiles and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Qi X, Xiong X, Liu M, Zhang Y, Zhang X, Jiang P, Wu Y, Guo X, Tong H. Cellulose nanofibril/titanate nanofiber modified with CdS quantum dots hydrogel with 3D porous structure: A stable photocatalytic adsorbent for Cr(VI) removal. Carbohydr Polym 2024; 326:121623. [PMID: 38142100 DOI: 10.1016/j.carbpol.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 12/25/2023]
Abstract
A novel cellulose nanofibril/titanate nanofiber modified with CdS quantum dots hydrogel (CTH) was synthesized as an effective, stable, and recyclable photocatalytic adsorbent using cellulose nanofibril (CN), titanate nanofiber (TN), and CdS quantum dots. Within the CTH structure, CN formed an essential framework, creating a three-dimensional (3D) porous structure that enhanced the specific surface area and provided abundant adsorption sites for Cr(VI). Simultaneously, TN modified with CdS quantum dots (TN-CdS) served as a nanoscale Z-type photocatalyst, facilitating the efficient separation of photoinduced electrons and holes, further increasing the photocatalytic efficiency. The morphological, chemical, and optical properties of CTH were thoroughly characterized. The CTH demonstrated the maximum theoretical adsorption capacity of 373.3 ± 14.2 mg/g, which was 3.4 times higher than that of CN hydrogel. Furthermore, the photocatalytic reduction rate constant of the CTH was 0.0586 ± 0.0038 min-1, which was 6.4 times higher than that of TN-CdS. Notably, CTH displayed outstanding stability, maintaining 84.9 % of its initial removal efficiency even after undergoing five consecutive adsorption-desorption cycles. The remarkable performance of CTH in Cr(VI) removal was attributed to its 3D porous structure, comprising CN and TN-CdS. These findings provide novel insights into developing a stable photocatalytic adsorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiang Xiong
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Meng Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuting Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Jiang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Haijie Tong
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| |
Collapse
|
15
|
Chen J, Liu F, Abdiryim T, Yin H, Liu X. ZnO-Ti 3C 2T X composites supported on polyacrylic acid/chitosan hydrogels as high-efficiency and recyclable photocatalysts for norfloxacin degradation. Int J Biol Macromol 2024; 258:128912. [PMID: 38141716 DOI: 10.1016/j.ijbiomac.2023.128912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Photocatalysts immobilized on hydrogels is a win-win mode, which not only improves photocatalysis but also successfully prevents catalyst loss, making it easy to separate and reuse during catalytic process. Here, ZnO-Ti3C2TX photocatalysts are loaded into the chitosan/polyacrylic acid hydrogel networks, realizing the efficiently photocatalytic degradation of norfloxacin. The chitosan-based composite hydrogel features rich functional groups and a dense pore structure, which is beneficial to antibiotic enrichment and photocatalytic degradation. The effects of different catalyst ratios, dosage, initial concentrations and pH on the degradation efficiency are investigated. The norfloxacin degradation rate constant is 0.012 min-1 and its degradation efficiency reaches up to 90 % after 240 min. Importantly, the photocatalytic composite hydrogel still retains 85 % degradation efficiency after 6 cycles. Moreover, e- plays a significant role in the degradation process. This work converts the traditional powder photocatalysts into bulk photocatalysts (photocatalytic hydrogels) to accomplish efficient degradation and rapid recycling for contaminant removal.
Collapse
Affiliation(s)
- Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Hongyan Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
16
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
17
|
Xue Y, Lu Y, Feng K, Zhang C, Feng X, Zhao Y, Chen L. Preparation of the self-accelerating photocatalytic self-cleaning carboxymethyl cellulose sodium-based hydrogel for removing cationic dyes. Int J Biol Macromol 2023; 250:125891. [PMID: 37473895 DOI: 10.1016/j.ijbiomac.2023.125891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Hydrogels loaded with photocatalysts have shown great potential in effectively degrading dye wastewater. In this work, carboxymethyl cellulose sodium-based hydrogels loaded with nitrogen-doped graphene oxide-zinc oxide-zinc peroxide (NGO-ZnO-ZnO2) were synthesized using hydrothermal reaction and in-situ synthesis method. NGO acts as an electron mediator, suppressing the recombination of photoinduced electrons and holes. ZnO2 decomposes to generate hydrogen peroxide (H2O2), promoting a self-enhanced photocatalytic reaction. Carboxymethyl cellulose sodium (CMC) acts as a dispersant, improving the uniformity and stability of NGO-ZnO-ZnO2 within the hydrogel. The results demonstrate that NGO-ZnO-ZnO2 exhibits high photocatalytic degradation efficiency towards methyl orange (MO) (10 mg/L) and rhodamine B (RhB) (50 mg/L), with degradation rates of 99.99 % (200 min) and 99.26 % (160 min), respectively. The carboxymethyl cellulose sodium-based hydrogel achieves a photocatalytic degradation rate of 95.85 % (220 min) for RhB (10 mg/L). After 5 cycles of repeated photocatalytic tests, the degradation efficiency of the hydrogel towards RhB reaches 80.81 %. This work provides a low-cost and convenient method for constructing novel hydrogel carriers with high photocatalytic stability and efficiency.
Collapse
Affiliation(s)
- Yingying Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yujia Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kezhuo Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chunyang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xia Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|