1
|
Finore I, Dal Poggetto G, Leone L, Cattaneo A, Immirzi B, Corsaro MM, Casillo A, Poli A. Sustainable production of heavy metal-binding levan by a subarctic permafrost thaw lake Pseudomonas strain 2ASCA. Int J Biol Macromol 2024; 268:131664. [PMID: 38636757 DOI: 10.1016/j.ijbiomac.2024.131664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, the polymer's chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a β-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.
Collapse
Affiliation(s)
- Ilaria Finore
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Giovanni Dal Poggetto
- Consiglio Nazionale delle Ricerche, Institute of Polymers, Composites and Biomaterial (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Luigi Leone
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Andrea Cattaneo
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy
| | - Barbara Immirzi
- Consiglio Nazionale delle Ricerche, Institute of Polymers, Composites and Biomaterial (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Na, Italy.
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Na, Italy.
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche C.N.R., Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Na, Italy.
| |
Collapse
|
2
|
González-Torres M, Hernández-Rosas F, Pacheco N, Salinas-Ruiz J, Herrera-Corredor JA, Hernández-Martínez R. Levan Production by Suhomyces kilbournensis Using Sugarcane Molasses as a Carbon Source in Submerged Fermentation. Molecules 2024; 29:1105. [PMID: 38474615 DOI: 10.3390/molecules29051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.
Collapse
Affiliation(s)
- Mariana González-Torres
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - Francisco Hernández-Rosas
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida 97302, Mexico
| | - Josafhat Salinas-Ruiz
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - José A Herrera-Corredor
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - Ricardo Hernández-Martínez
- CONAHCYT-Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| |
Collapse
|
3
|
Immanuel A, Yennamalli RM, Ulaganathan V. Targeting the Bottlenecks in Levan Biosynthesis Pathway in Bacillus subtilis and Strain Optimization by Computational Modeling and Omics Integration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:49-58. [PMID: 38315781 DOI: 10.1089/omi.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Levan is a fructan polymer with many industrial applications such as the formulation of hydrogels, drug delivery, and wound healing, among others. To this end, metabolic systems engineering is a valuable method to improve the yield of a specific metabolite in a wide range of bacterial and eukaryotic organisms. In this study, we report a systems biology approach integrating genomics data for the Bacillus subtilis model, wherein the metabolic pathway for levan biosynthesis is unpacked. We analyzed a revised genome-scale enzyme-constrained metabolic model (ecGEM) and performed simulations to increase levan biopolymer production capacity in B. subtilis. We used the model ec_iYO844_lvn to (1) identify the essential genes and bottlenecks in levan production, and (2) specifically design an engineered B. subtilis strain capable of producing higher levan yields. The FBA and FVA analysis showed the maximal growth rate of the organism up to 0.624 hr-1 at 20 mmol gDw-1 hr-1 of sucrose intake. Gene knockout analyses were performed to identify gene knockout targets to increase the levan flux in B. subtilis. Importantly, we found that the pgk and ctaD genes are the two target genes for the knockout. The perturbation of these two genes has flux gains for levan production reactions with 1.3- and 1.4-fold the relative flux span in the mutant strains, respectively, compared to the wild type. In all, this work identifies the bottlenecks in the production of levan and possible ways to overcome them. Our results provide deeper insights on the bacterium's physiology and new avenues for strain engineering.
Collapse
Affiliation(s)
- Aruldoss Immanuel
- Molecular Motors Lab, Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Venkatasubramanian Ulaganathan
- Molecular Motors Lab, Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
de Siqueira EC, de Andrade Alves A, da Costa E Silva PE, de Barros MPS, Houllou LM. Polyhydroxyalkanoates and exopolysaccharides: An alternative for valuation of the co-production of microbial biopolymers. Biotechnol Prog 2024; 40:e3412. [PMID: 37985126 DOI: 10.1002/btpr.3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPSs) belong to a class of abundant biopolymers produced by various fermenting microorganisms. These biocompounds have high value-added potential and can be produced concurrently. Co-production of PHAs and EPSs is a strategy employed by researchers to reduce costs associated with large-scale production. EPSs and PHAs are non-toxic, biocompatible, and biodegradable, making them suitable for various industrial sectors, including packaging and the medical and pharmaceutical industries. These biopolymers can be derived from agro-industrial residues, thus contributing to the bioeconomy by producing high-value-added products. This review investigates approaches for simultaneously synthesizing PHAs and EPSs using different carbon sources and microorganisms.
Collapse
Affiliation(s)
| | - Aline de Andrade Alves
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Cidade Universitária, Recife, Brazil
| | | | | | | |
Collapse
|
5
|
Peled E, Tornaci S, Zlotver I, Dubnika A, Toksoy Öner E, Sosnik A. First transcriptomic insight into the reprogramming of human macrophages by levan-type fructans. Carbohydr Polym 2023; 320:121203. [PMID: 37659791 DOI: 10.1016/j.carbpol.2023.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/04/2023]
Abstract
Based on stimuli in the biological milieu, macrophages can undergo classical activation into the M1 pro-inflammatory (anti-cancer) phenotype or to the alternatively activated M2 anti-inflammatory one. Drug-free biomaterials have emerged as a new therapeutic strategy to modulate macrophage phenotype. Among them, polysaccharides polarize macrophages to M1 or M2 phenotypes based on the surface receptors they bind. Levan, a fructan, has been proposed as a novel biomaterial though its interaction with macrophages has been scarcely explored. In this study, we investigate the interaction of non-hydrolyzed and hydrolyzed Halomonas levan and its sulfated derivative with human macrophages in vitro. Viability studies show that these levans are cell compatible. In addition, RNA-sequencing analysis reveals the upregulation of pro-inflammatory pathways. These results are in good agreement with real time-quantitative polymerase chain reaction that indicates higher expression levels of C-X-C Motif Chemokine Ligand 8 and interleukin-6 genes and the M2-to-M1 reprogramming of these cells upon levan treatment. Finally, cytokine release studies confirm that hydrolyzed levans increase the secretion of pro-inflammatory cytokines and reprogram IL-4-polarized macrophages to the M1 state. Overall findings indicate that Halomonas levans trigger a classical macrophage activation and pave the way for their application in therapeutic interventions requiring a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Selay Tornaci
- IBSB, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Arita Dubnika
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ebru Toksoy Öner
- IBSB, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Ali SS, Elgibally E, Khalil MA, Sun J, El-Shanshoury AERR. Characterization and bioactivities of exopolysaccharide produced from Azotobacter salinestris EPS-AZ-6. Int J Biol Macromol 2023; 246:125594. [PMID: 37390994 DOI: 10.1016/j.ijbiomac.2023.125594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
This study involved the extraction of an exopolysaccharide (EPS) from Azotobacter salinestris AZ-6, which was isolated from soil cultivated with leguminous plants. In a medium devoid of nitrogen, the AZ-6 strain displayed a maximum EPS yield of 1.1 g/l and the highest relative viscosity value of 3.4. The homogeneity of the polymer was demonstrated by the average molecular weight of 1.61 × 106 Da and a retention time of 17.211 min for levan. The presence of characteristic functional groups and structural units of carbohydrate polymers has been confirmed through spectroscopic analyses utilizing Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) techniques. Thermogravimetric analysis (TGA) revealed a noteworthy decrease in weight (74 %) in the temperature range spanning from 260 to 350 °C. X-ray diffraction (XRD) was utilized to verify the crystalline and amorphous characteristics of EPS-AZ-6. The EPS-AZ-6 exhibited significant cytotoxicity against the MCF-7 tumor cell line, as evidenced by an IC50 value of 6.39 ± 0.05 μg/ml. It also demonstrated a moderate degree of cytotoxicity towards HepG-2 cell line, as indicated by an IC50 value of 29.79 ± 0.41 μg/ml. EPS-AZ-6 exhibited potent antioxidant and in vitro antibacterial properties. These characteristics suggest the potential application value of EPS-AZ-6 in the food industry and pharmaceutical applications.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Eman Elgibally
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Maha A Khalil
- Biology Department, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | |
Collapse
|