1
|
Khan S, Gaivin RJ, Liu Z, Li V, Samuels I, Son J, Osei-Owusu P, Garvin JL, Accili D, Schelling JR. Fatty Acid Transport Protein-2 (FATP2) Inhibition Enhances Glucose Tolerance through α-Cell-mediated GLP-1 Secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635976. [PMID: 39975070 PMCID: PMC11838418 DOI: 10.1101/2025.01.31.635976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 2 diabetes affects more than 30 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Direct evidence of FATP2KO-induced α-cell-mediated GLP-1 secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine β-cell insulin release. Graphical abstract
Collapse
|
2
|
Xu Y, Wang Q, Xu G, Xu Y, Mou Y. Screening, optimization, and ADMET evaluation of HCJ007 for pancreatic cancer treatment through active learning and dynamics simulation. Front Chem 2024; 12:1482758. [PMID: 39654652 PMCID: PMC11626003 DOI: 10.3389/fchem.2024.1482758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
In this study, we leveraged a sophisticated active learning model to enhance virtual screening for SQLE inhibitors. The model's improved predictive accuracy identified compounds with significant advantages in binding affinity and thermodynamic stability. Detailed analyses, including molecular dynamics simulations and ADMET profiling, were conducted, particularly focusing on compounds CMNPD11566 and its derivative HCJ007. CMNPD11566 showed stable interactions with SQLE, while HCJ007 exhibited improved binding stability and more frequent interactions with key residues, indicating enhanced dynamic adaptability and overall binding effectiveness. ADMET data comparison highlighted HCJ007s superior profile in terms of lower toxicity and better drug-likeness. Our findings suggest HCJ007 as a promising candidate for SQLE inhibition, with significant improvements over CMNPD11566 in various pharmacokinetic and safety parameters. The study underscores the efficacy of computational models in drug discovery and the importance of comprehensive preclinical evaluations.
Collapse
Affiliation(s)
- YunYun Xu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiang Wang
- General Surgery, Tiantai People’s Hospital, Taizhou, Zhejiang, China
| | - GaoQiang Xu
- General Surgery, Tiantai People’s Hospital, Taizhou, Zhejiang, China
| | - YouJian Xu
- General Surgery, Tiantai People’s Hospital, Taizhou, Zhejiang, China
| | - YiPing Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Meng Q, Tan X, Wu B, Zhang S, Zu Y, Jiang S. Polysaccharide of sunflower (Helianthus annuus L.) stalk pith inhibits cancer proliferation and metastases via TNF-α pathway. Int J Biol Macromol 2024; 272:132873. [PMID: 38838890 DOI: 10.1016/j.ijbiomac.2024.132873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China; College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, PR China
| | - Xiao Tan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China
| | - Bi Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China
| | - Siyan Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China; College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, PR China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China.
| | - Shougang Jiang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China; State Engineering Laboratory of Bio-Resources Eco-Utilization, Northeast Forestry University, Harbin, PR China; College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Harbin, PR China.
| |
Collapse
|
4
|
Hosseini SB, Azizi M, Nojoumi SA, Valizadeh V. An up-to-date review of biomedical applications of serratiopeptidase and its biobetter derivatives as a multi-potential metalloprotease. Arch Microbiol 2024; 206:180. [PMID: 38502196 DOI: 10.1007/s00203-024-03889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Serratiopeptidase is a bacterial metalloprotease used in a variety of medical applications. The multidimensional properties of serratiopeptidase make it noticeable as a miraculous enzyme. Anti-coagulant, anti-inflammatory and anti-biofilm activity of serratiopeptidase making it useful in reducing pain and swelling associated with various conditions including arthritis, diabetes, cancer, swelling, pain and also thrombolytic disorders. It breaks down fibrin, thins the fluids formed during inflammation and due to its anti-biofilm activity, can be used in the combination of antibiotics to reduce development of antibiotic resistance. However, some drawbacks like sensitivity to environmental conditions and low penetration into cells due to its large size have limited its usage as a potent pharmaceutical agent. To overcome such limitations, improved versions of the enzyme were introduced using protein engineering in our previous studies. Novel functional serratiopeptidases with shorter length and higher stability have seemingly created a hope for using this enzyme as a more effective therapeutic enzyme. This review explains the structural properties and functional aspects of serratiopeptidase, its main characteristics and properties, pre-clinical and clinical applications of the enzyme, improved qualities of the modified forms, different formulations of the enzyme, and the potential future developments.
Collapse
Affiliation(s)
- Seyedeh Bahareh Hosseini
- New Technologies Research Group, Nanobiotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Azizi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- New Technologies Research Group, Nanobiotechnology Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|