1
|
Liu H, Zhang H, Ye Z, Xiong G. Efficient removal of anionic dye congo red by Chitosan/Poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel. Int J Biol Macromol 2025; 294:139462. [PMID: 39756735 DOI: 10.1016/j.ijbiomac.2025.139462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Chitosan, as a natural and environmentally friendly material, has attracted significant attention in the field of water treatment. In this study, a Chitosan/poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel (CPDA hydrogel) featuring a semi-interpenetrating network structure was synthesized via free radical copolymerization for the removal of the anionic dye Congo Red (CR) from wastewater. SEM-EDS, FTIR, XPS, TG, Zeta potential, and mercury intrusion porosimetry (MIP) were employed to analyze the physical and chemical changes in the hydrogel before and after adsorption. The results revealed that the CPDA hydrogel can selectively adsorb anionic dyes through electrostatic interactions. The study on the adsorption performance of the CPDA hydrogel demonstrated its excellent swelling capacity and stable adsorption of Congo Red over a broad pH range of 4 to 10. Subsequently, the adsorption process of Congo Red followed the Pseudo-Second-Order kinetic model and the Hill isotherm model, suggesting that Congo Red may self-assemble into ribbon-like micelles for cooperative adsorption and achieving a maximum adsorption capacity of 1803.507 mg/g. Furthermore, the CPDA hydrogel exhibited outstanding reusability over six adsorption-desorption cycles. Thus, the prepared CPDA hydrogel shows great potential as a material for the selective removal of Congo Red from mixed dye solutions.
Collapse
Affiliation(s)
- Hongyu Liu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Huiling Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ziyan Ye
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Gaohong Xiong
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Cui B, Yan Z, Bu N, Liang L, Yao W, Wang S, Cui J, Yan W, Yang L, Yang Y, Yuan Y, Xia L. Bio-inspired porous adsorbents with lotus-leaf-like hierarchical structures and mussel adhesive surfaces for high-capacity removal of toxic dyes. ENVIRONMENTAL RESEARCH 2025; 268:120776. [PMID: 39788444 DOI: 10.1016/j.envres.2025.120776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Basic dyes are highly toxic and have adverse effects on humans such as accelerated heart rate, shock, cyanosis, and tissue necrosis upon ingestion or skin contact. Efficient removal of basic dye pollutants from wastewater is therefore essential for the protection of the environment and human health. Biomolecules exhibit excellent dye removal performance in terms of removal capacity, selectivity, and rate. However, their poor thermal/chemical stability precludes their large-scale industrial applications. Herein, porous aromatic frameworks (PAFs) were utilized for the biomimetic construction of mussel, which included two unique features: (1) multistage pore structures for the rapid transport of dye contaminants and (2) mussel-inspired adhesive surfaces for cationic dye removal. Accordingly, the solid PAFs exhibited a record adsorption capacity of 7300 mg g-1 and ultrahigh adsorption rates for cationic dye (safranine T) (188.78 mg g-1 min-1 in the first 20 min). Notably, the bionic adsorbent system exhibited outstanding dye removal performance under various conditions such as after multiple reuse cycles, acid/alkali environments, presence of multiple anions, and in different water bodies (e.g., seawater, lake water, rainwater, and sanitary wastewater). This demonstrates the broad adaptability of the system and its ability to effectively deal with dye contamination in a variety of environments.
Collapse
Affiliation(s)
- Bo Cui
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China.
| | - Naishun Bu
- School of Environmental Science, Liaoning University, Shenyang, 110036, PR China
| | - Lijuan Liang
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Wanting Yao
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Suri Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Jingbo Cui
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Weihan Yan
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Lini Yang
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, PR China.
| |
Collapse
|
3
|
Liu ZW, Wang XL, Xian HJ, Zhong JH, Ye XG, Yang YX, Hu Y, Chen Y, Li DM, Huang C. Highly efficient malachite green adsorption by bacterial cellulose and bacterial cellulose/locust bean gum composite. Int J Biol Macromol 2024; 279:134991. [PMID: 39197602 DOI: 10.1016/j.ijbiomac.2024.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In this study, bacterial cellulose (BC) and BC/locust bean gum (LBG) composite produced from banana hydrolysate were both used as the adsorbent for various organic dyes adsorption especially for malachite green (MG) adsorption for the first time. The BC/LBG(2%) composite exhibited significantly enhanced swelling rate and textural characteristics while maintained the basic structure of BC as depicted by XRD, FT-IR, and NMR, providing a foundation for its application as an excellent adsorbent. The composite exhibited a high adsorption rate and adsorption capacity for MG (exceeding 95 % and 2000 mg/g), and had a good selectivity for MG adsorption in the solution containing crystal violet (CV), rhodamine B (RB), and methyl orange (MO). The MG adsorption process conformed to multiple models including Langmuir and pseudo-first-order models. And the adsorption mechanism mainly comprised chemical adsorption (hydrogen bonding and electrostatic interactions) and physical adsorption. The reusability of BC/LBG(2%) composite was attractive for industrial application that the MG adsorption rate reduced merely a little (still higher than 88 %) after the 5th regeneration process. Overall, considering its adsorption capacity, selectivity, and reusability, BC/LBG(2%) composite prepared by in-situ fermentation with LBG addition was a competent adsorbent for MG adsorption and MG containing wastewater treatment.
Collapse
Affiliation(s)
- Zhuo-Wei Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xiao-Lin Wang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Hui-Jun Xian
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jun-Hang Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong-Xia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
4
|
Zhang W, Zeng Y, Cai F, Wei H, Wu Y, Yu H. Facile preparation of interpenetrating network hydrogel adsorbent from starch- chitosan for effective removal of methylene blue in water. Int J Biol Macromol 2024; 277:134340. [PMID: 39094889 DOI: 10.1016/j.ijbiomac.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yin Zeng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Fengying Cai
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
5
|
Zhang L, Li Q, Liang Y, Zhang G, Zou J, Fei P, Lai W. Hydrogels comprising oxidized carboxymethyl cellulose and water-soluble chitosan at varied oxidation levels: Synthesis, characterization, and adsorptive toward methylene blue. Int J Biol Macromol 2024; 277:134351. [PMID: 39089547 DOI: 10.1016/j.ijbiomac.2024.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Chitosan, as a biomaterial, has increasingly garnered attention. However, its limited solubility in water-only dissolving in certain dilute acidic solutions-substantially restricts its broader application. In this investigation, chitosan underwent a solubilization modification to acquire water solubility, facilitating its dissolution in neutral aqueous mediums. Subsequently, this water-soluble chitosan (WSC) was interlinked with oxidized carboxymethyl cellulose (OCMC), characterized by varied oxidation extents, to synthesize hydrogels. Structural characterization verified the formation of imine bonds resulting from crosslinking interactions between the amino groups of water-soluble chitosan and the aldehyde groups of oxidized carboxymethyl cellulose. Employing performance characterization analysis, it was discerned that an increase in the oxidation level of the oxidized carboxymethyl cellulose corresponded to a denser hydrogel network architecture and the hardness increased from 3.01 N to 6.16 N. Moreover, the capacity of these hydrogels to adsorb methylene blue was meticulously examined. Notably, the hydrogel denoted as WSC/66%OCMC manifested an adsorption capability of 28.08 mg/g for methylene blue. Analytical findings from adsorption kinetics and isotherm studies indicate that the adsorption mechanism of the WSC/66%OCMC hydrogel follows the pseudo-second-order kinetic model and corresponds to the Freundlich isotherm model.
Collapse
Affiliation(s)
- Linyu Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qianqi Li
- Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yingqi Liang
- Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jinmei Zou
- Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Research Institute of Zhangzhou-taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
6
|
Zhang L, Xu J, Hu Z, Wang P, Shang J, Zhou J, Ren L. Antireflective Superhydrophobic and Robust Coating Based on Chitin Nanofibers and Methylsilanized Silica for Outdoor Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38690-38701. [PMID: 38988275 DOI: 10.1021/acsami.4c05778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Antireflective coatings with superhydrophobicity have many outdoor applications, such as solar photovoltaic panels and windshields. In this study, we fabricated an omnidirectional antireflective and superhydrophobic coating with good mechanical robustness and environmental durability via the spin coating technique. The coating consisted of a layer of phytic acid (PA)/polyacrylamide (PAM)/calcium ions (Ca2+) (referred to as Binder), an antireflective layer composed of chitin nanofibers (ChNFs), and a hydrophobic layer composed of methylsilanized silica (referred to as Mosil). The transmittance of a glass slide with the Binder/ChNFs/Mosil coating had a 5.2% gain at a wavelength of 550 nm, and the antireflective coating showed a water contact angle as high as 160° and a water sliding angle of 8°. The mechanical robustness and environmental durability of the coating, including resistance to peeling, dynamic impact, chemical erosion, ultraviolet (UV) irradiation, and high temperature, were evaluated. The coating retained excellent antireflective capacity and self-cleaning performance in the harsh conditions. The increase in voltage per unit area of a solar panel with a Binder/ChNFs/Mosil coating reached 0.4 mV/cm2 compared to the solar panel exposed to sunlight with an intensity of 54.3 × 103 lx. This work not only demonstrates that ChNFs can be used as raw materials to fabricate antireflective superhydrophobic coatings for outdoor applications but also provides a feasible and efficient approach to do so.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jian Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhiqing Hu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Peizhuang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Gonçalves JO, Strieder MM, Silva LFO, Dos Reis GS, Dotto GL. Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. Int J Biol Macromol 2024; 270:132307. [PMID: 38740151 DOI: 10.1016/j.ijbiomac.2024.132307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.
Collapse
Affiliation(s)
- Janaína Oliveira Gonçalves
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| | - Monique Martins Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, Limeira, São Paulo 13484-350, Brazil
| | | | - Glaydson Simões Dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Peng X, Yan J, He C, Liu R, Liu Y. Sustainable triethylenetetramine modified sulfonated graphene oxide/chitosan composite for enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions. Int J Biol Macromol 2024; 261:129741. [PMID: 38281533 DOI: 10.1016/j.ijbiomac.2024.129741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A novel sulfonated group and triethylenetetramine modified GO/chitosan (GO-CS) adsorbent (T-SGO-CS) was successfully prepared and utilized for the adsorption of heavy metal ions from single-metal, binary-metal, and ternary-metal solutions. In a single system, the adsorption capacity was 312.28 mg/g for Pb2+, 260.52 mg/g for Cd2+, and 84.61 mg/g for Ni2+, whereas, Adsorption of Pb(II), Cd(II), and Ni(II) in binary and ternary systems was systematically studied. In tertiary systems, the effect of competitive adsorption was more pronounced. In addition, T-SGO-CS exhibited a high adsorption capacity and was recyclable for Pb2+, Cd2+, and Ni2+. T-SGO-CS is a novel and highly efficient adsorbent for omnidirectionally enhancing the adsorption of Pb2+, Cd2+, and Ni2+, as demonstrated by these results. Therefore, T-SGO-CS could be investigated as a potential new material for future applications in heavy metal removal.
Collapse
Affiliation(s)
- Xiongyi Peng
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Junlong Yan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Rong Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, China
| | - Yangshuo Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, 430200, China; School of Chemistry and Chemical Engineering, Wuhan Textile University, China.
| |
Collapse
|
9
|
Song Y, Xing L, Zou X, Zhang C, Huang Z, Liu W, Wang J. A chitosan-based conductive double network hydrogel doped by tannic acid-reduced graphene oxide with excellent stretchability and high sensitivity for wearable strain sensors. Int J Biol Macromol 2024; 258:128861. [PMID: 38114012 DOI: 10.1016/j.ijbiomac.2023.128861] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Conductive hydrogels usually suffer from weak mechanical properties and are easily destroyed, resulting in limited applications in flexible electronics. Concurrently, adding conductive additives to the hydrogel solution increases the probability of agglomeration and uneven dispersion issues. In this study, the biocompatible natural polymer chitosan was used as the network substrate. The rigid network employed was the Cit3-ion crosslinked chitosan (CS) network, and the MBA chemically crosslinked polyacrylamide (PAM) network was used as the flexible network. Tannic acid-reduced graphene oxide (TA-rGO), which has excellent conductivity and dispersibility, is used as a conductive filler. Thus, a CS/TA-rGO/PAM double network conductive hydrogel with excellent performance, high toughness, high conductivity, and superior sensing sensitivity was prepared. The prepared CS/TA-rGO/PAM double network conductive hydrogels have strong tensile properties (strain and toughness as high as 2009 % and 1045 kJ/cm3), excellent sensing sensitivity (GF value was 4.01), a wider strain detection range, high cycling stability and durability, good biocompatibility, and antimicrobial properties. The hydrogel can be assembled into flexible wearable devices that can not only dynamically detect human movements, such as joint bending, facial expression changes, swallowing, and saying, but also recognize handwriting and enable human-computer interaction.
Collapse
Affiliation(s)
- Yaoting Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China
| | - Lu Xing
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China
| | - Xinquan Zou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China
| | - Chenyan Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China
| | - Zhonghuang Huang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China
| | - Wenxiu Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China
| | - Jikui Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, People's Republic of China.
| |
Collapse
|