1
|
Liu L, Hu Y, Du L, Du J, Hu J, Sun T, Dong T, Yun X. Tannic acid-grafted Polylactic acid films: A nonmigrating antibacterial packaging for chilled fresh meat. Food Chem 2025; 464:141796. [PMID: 39489670 DOI: 10.1016/j.foodchem.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Antimicrobial packaging can prolong the shelf life of fresh food, but those active antimicrobial substances may leach into the food and affect its quality. To avoid this phenome, the CC double bond was first incorporated into the chemical structure of polylactic acid (PLLA) and tannic acid (TA) to prepare poly(L-LA-co-butyrate itaconate) (PLBI) and photoactive tannic acid (pTA). Then pTA-grafted PLBI (pTA-g-PLBI) films were fabricated using UV curing technology. Results showed that pTA was successfully grafted onto the surface of PLBI film and formed a uniform layer. The pTA-g-PLBI films exhibited good bacteriostatic effects of 86 %, 90 %, and 96 % on E. coli, P. fluorescens, and S. aureus, respectively. Additionally, pTA-g-PLBI packaging reduced the relative abundance of Shewanella, Psychrobacter, and Pseudomonas in chilled pork and delayed the deterioration of pork for more than 5 days.
Collapse
Affiliation(s)
- Linze Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Yajie Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Le Du
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Jiahui Du
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Jian Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia, 010010, China.
| |
Collapse
|
2
|
Su J, Zhang W, Moradi Z, Rouhi M, Parandi E, Garavand F. Recent functionality developments of carboxymethyl chitosan as an active food packaging film material. Food Chem 2025; 463:141356. [PMID: 39316899 DOI: 10.1016/j.foodchem.2024.141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In recent years, environmental concerns regarding the persistence of petroleum-based plastic food packaging have increased, prompting the exploration of biopolymer alternatives. Carboxymethyl chitosan (CMCS), a derivative of chitosan, exhibits superior water-soluble film properties, making it an ideal material for degradable food packaging applications. This study comprehensively examines the synthesis methods and properties of CMCS, with a particular emphasis on recent advancements in CMCS-based food packaging films. Various functionalized CMCS-based food packaging films, including coblended, nanoparticle composite, plant extract composite, and cross-linked films, were reviewed. The practical applications of CMCS-based food packaging films and edible coatings in food preservation are also showcased. This study emphasizes that the notable compatibility of CMCC with a range of polymers and additives has facilitated the development of multifunctional packaging films. These innovations, including antibacterial, antioxidant, and smart-indicating variants, have demonstrated remarkable efficacy in preserving fruits, aquatic products, poultry, and other perishable goods.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Zahra Moradi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Rouhi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Center, Fermoy, Ireland
| |
Collapse
|
3
|
Zhao X, Chen T, Liu J, Wang X, Weng Y. Development of antifouling antibacterial polylactic acid (PLA) -based packaging and application for chicken meat preservation. Food Chem 2025; 463:141116. [PMID: 39265408 DOI: 10.1016/j.foodchem.2024.141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Microbial contamination is the leading cause of food spoilage and food-borne disease. Here, we developed a multifunctional surface based on polylactic acid (PLA) bioplastic with antifouling and antibacterial properties via a facile dual-coating approach. The surface was designed with hierarchical micro/nano-scale roughness and low surface energy. Bactericidal agent polyhexamethylene guanidine hydrochloride (PHMG) was incorporated to endow the film with bactericidal activity. The film had good superhydrophobic, antifouling and antibacterial performance, with a water contact angle of 154.3°, antibacterial efficiency against E. coli and S. aureus of 99.9 % and 99.6 %, respectively, and biofilm inhibition against E. coli and S. aureus of 63.5 % and 68.9 %, respectively. Synergistic effects of antibacterial adhesion and contact killing of bacteria contributed to the significant antibacterial performance of the film. The biobased biodegradable film was highly effective in preventing microbial growth when applied as antibacterial food packaging for poultry product, extending the shelf life of fresh chicken breast up to eight days.
Collapse
Affiliation(s)
- Xiaoying Zhao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Tianyu Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jiaxin Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Xinning Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yunxuan Weng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, No.11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
4
|
Li Y, Ni Y, He W, Li H, Zhang W, Tan L, Zhao J, Xu B. Mussel-inspired highly adhesive carrageenan-based coatings with self-activating enhanced activity for meat preservation. Carbohydr Polym 2025; 348:122840. [PMID: 39562113 DOI: 10.1016/j.carbpol.2024.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
In order to solve the problem of poor adhesion of polysaccharide coatings in meat storage and inconvenient secondary spraying, which leads to poor preservation effect, this study was inspired by the property of mussels to adhere firmly to surfaces and design a bioactive composite coating. Here, curcumin-loaded zein nanoparticles (CZ NPs) were successfully prepared and incorporated into carrageenan-based biocomposite coatings for chilled meat preservation. The prepared curcumin-zein-riboflavin-carrageenan (CZRC) coating featured smooth spherical morphology and the solubility of hydrophobic substances, the adhesion and stability of the composite coating were respectively improved to 3.8 and 6 times compared to CZ NPs. The CZRC coating also shows desirable antioxidant activity (89.78 ± 4.8 % on DPPH and 91.40 ± 2.1 % on ABTS+) and the treatment based on CZRC coating under light irradiation reduced Pseudomonas fragi (by 2.02 log CFU/mL) and Brochothrix thermosphacta (by 4.35 log CFU/mL), which prolonged the shelf life of lamb and pork to 1.8 and 2.3 times at 4 °C storage condition. This work provides a viable strategy for the development of highly adhesive coatings with self-activation enhanced activity to achieve long-lasting preservation.
Collapse
Affiliation(s)
- Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| | - Wei He
- Shandong Huifa Foodstuff Co., Ltd., Zhucheng 262200, Shandong Province, China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| |
Collapse
|
5
|
Li B, Yang Y, Kou X, Yang M, Normakhamatov N, Alasmari AF, Xin B, Tan Y. Water-soluble polysaccharides extracted from Enteromorpha prolifera/PVA composite film functionalized as ε-polylysine with improved mechanical and antibacterial properties. Int J Biol Macromol 2024; 282:136697. [PMID: 39427792 DOI: 10.1016/j.ijbiomac.2024.136697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The issue of environmental protection has received sustained and widespread attention. In order to reduce environmental pollution related to traditional plastics, it is an incessant demand to design novel environment-friendly food packaging materials with excellent performance. Sulfated polysaccharide extracted from the "green tide" marine pollution Enteromorpha prolifera (SPE) has been innovatively transformed into a film-forming material for better utilization. The insufficient mechanical properties and limited functionalities, however, hinder its wide application. In this study, polyvinyl alcohol (PVA) was blended to enhance its mechanical properties and ε-polylysine (ε-PL) was incorporated to endow it with antimicrobial performance. A novel and biodegradable film composed of SPE, PVA, and ε-PL was fabricated by casting method. We further determined the physicochemical properties of composited films. Mechanical performance test revealed the tensile strength of SPE-PVA-PL films increased from 5.56 MPa to 6.65 MPa and the E% increased from 128.8 % to 246.9 % compared with that of SPE-PVA films. Antimicrobial tests showed the excellent antibacterial activity of SPE-PVA-PL films against representative microbial species, Staphylococcus aureus and Escherichia coli. The results of this study suggested that the SPE-based composite film has the potential to be used as a potential food packaging and wound dressing materials.
Collapse
Affiliation(s)
- Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingying Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Xinhua Kou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Manli Yang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek str, 45, Tashkent 100015, Uzbekistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
6
|
Ning Y, Shi J, Yu S, Du R, Ge J, Zhao D. Characterization of exopolysaccharide / starch composite film incorporated with TiO 2 nanoparticles and its application in chilled meat preservation. Int J Biol Macromol 2024; 281:136270. [PMID: 39366616 DOI: 10.1016/j.ijbiomac.2024.136270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Multifunctional food packaging composite films were prepared using Pediococcus acidilactici J1 exopolysaccharide (EPS), potato starch (PS) and TiO2 nanoparticles by casting method. The microstructure, physicochemical properties and antibacterial activity of EPS/PS composite films with different weight ratio of TiO2 nanoparticles were characterized. Transmission electron microscope (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed the uniform distribution of TiO2 nanoparticles in the EPS/PS matrix. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) results indicated that the interaction between polymers and nanoparticles through non-covalent bonds. When TiO2 nanoparticles were added at 1 % (wt), the composite film had higher barrier properties against water vapor and UV-vis light, and better mechanical properties then EPS/PS film. Notably, EPS/PS/1%TiO2 composite film exhibited good antioxidant and antibacterial activity against Escherichia coli and Staphylococcus aureus. Through the analysis of the quality indexes and microbial community structure during the storage of chilled meat, the composite film slowed the oxidation rate of chilled meat and inhibited the growth of dominant spoilage bacteria, effectively extending its shelf life. All results suggested that EPS/PS/1%TiO2 composite film could serve as an effective packaging material for chilled meat, providing a novel approach to solve its limited shelf-life problem.
Collapse
Affiliation(s)
- Yingying Ning
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingjun Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shan Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
7
|
Pandey S, Sekar H, Gundabala V. Development and characterization of bilayer chitosan/alginate cling film reinforced with essential oil based nanocomposite for red meat preservation. Int J Biol Macromol 2024; 279:135524. [PMID: 39265899 DOI: 10.1016/j.ijbiomac.2024.135524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
With a goal to finding suitable alternatives to plastic packaging in the food industry, we developed a multifunctional bio-based active packaging film to enhance the shelf life of red meat. A chitosan/alginate (Chi + Alg) bilayer film was developed through layer-by-layer (LBL) assembly and an active material i.e. lemongrass nanoemulsion with silver nanoparticles-based nanocomposite (NC1) was loaded into the alginate layer to improve the quality of the bio-based film (Chi + Alg + NC1). The Chi + Alg + NC1 film was characterized in terms of its microstructure, mechanical strength, thermal stability, and antimicrobial activity. Scanning electron microscopy (SEM) revealed a film (22.5 ± 1.44 μm thickness) with a smooth and even surface and a cross-sectional structure. The incorporation of NC1 improves the quality of the film by enhancing its mechanical strength and thermal stability. FT-IR spectra showed the successful interaction between chitosan and alginate in the LBL assembly and the incorporation of NC1 in the alginate layer. The red meat preservation test demonstrated that the shelf life improved when the meat was covered with the fabricated bio-based film. The color of the meat was retained for up to 7 days compared to that of the control (Chi alone and Chi + Alg). Additionally, a reduction in the microbial count in the Chi + Alg + NC1 film was observed, corroborating the shelf-life improvement. In addition to its inherent antimicrobial properties, NC1 induced hydrophilic properties to the film, which further aids in its antimicrobial activity against E. coli. These findings suggest that Chi + Alg + NC1 film could be a potent alternative to plastic packaging and can be used as a cling film to prolong the shelf life of red meat.
Collapse
Affiliation(s)
- Shipra Pandey
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Hariharan Sekar
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
8
|
Jiang Y, Sun Y, Wei C, Li X, Deng W, Wu S, Kong F, Sheng L. Development and characterization of curcumin-loaded chitosan/egg yolk freshness-keeping edible films for chilled fresh pork packaging application. Int J Biol Macromol 2024; 276:133907. [PMID: 39019376 DOI: 10.1016/j.ijbiomac.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
In this study, a novel fresh-keeping edible film was prepared using egg yolk (EY) and chitosan (CS) with varying concentrations of curcumin (Cur) for food packaging. The addition of Cur notably enhanced tensile strength, elongation at break, and water resistance from 15.70 MPa to 24.24 MPa, 43.79 % to 63.69 %, and 1.599 g·mm·(m2·h·kPa)-1 to 1.541 g·mm·(m2·h·kPa)-1, respectively. Cur also impacted moisture content, swelling degree, and film color. SEM revealed a uniform distribution of Cur, creating a smooth and dense film surface. FT-IR analysis suggested that hydrogen bonding facilitated Cur integration into the film network. The films demonstrated excellent UV-blocking and antioxidant properties attributed to Cur's chromogenic and phenolic hydroxyl groups. Consequently, they effectively inhibited lipid oxidation and weight loss in meat, thereby prolonging the shelf-life of chilled pork by at least 2 d. In conclusion, this study provided a simple and cost-effective idea to incorporate actives with EY as a natural emulsifier, presenting an effective solution for developing active packaging materials to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Yiting Jiang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunxin Sun
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfeng Wei
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanqing Deng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sirui Wu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fandi Kong
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhang Y, Zhao K, Qu W, Zhang Z, Shu Y, Zhang X, Jiao Y, Wang W. Using celluloses to reinforce the optimized alginate film in wet state: Effect of cellulose types and cooking treatment. Int J Biol Macromol 2024; 275:133328. [PMID: 38945702 DOI: 10.1016/j.ijbiomac.2024.133328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Alginate (Alg) as co-extruded casing is of interest to the meat industry as replacers for natural sausage casing. However, these studies on the mechanical reinforcement of Alg-based film are still limited in the wet state (e.g. co-extrusion process). In this work, Alg-D with the highest viscosity-average molecular weight (1.12 × 105) was selected from four types of alginates based on the results of the viscosity of Alg solutions and film strength. Next, three celluloses (cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated fiber (MFC)) were added to the Alg-D matrix at different concentrations. SEM showed that the cross section of the Alg-based films became more compact and uniform when the size of celluloses decreased. The tensile test revealed that the strength (TS) of Alg-based films exhibited an initial increase followed by a subsequent drop as the cellulose content rose. The best mechanical strengthening effect was the Alg-CNC film (1.16 MPa), which increased by 93.33 % compared with that of pure Alg. Cooking treatment could further enhance this trend. The opacity increased gradually with the increase of cellulose content, while these films were still transparent enough for food packaging. These findings would have potential applications in food packaging, especially co-extruded sausage casings.
Collapse
Affiliation(s)
- Yinglu Zhang
- Tianjin Er-shang Yingbin Meat Food Co., Ltd., Tianjin 300385, China
| | - Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Qu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhisheng Zhang
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China.
| | - Ying Shu
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Xu Zhang
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Yingxue Jiao
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
Ni Y, Li Y, Wang M, Li H, Zhang W, Tan L, Zhao J, Xu B. Chitosan-based packaging films with antibacterial-sterilization integrated continuous activity for extending the shelf life of perishable foods. Int J Biol Macromol 2024; 275:133351. [PMID: 38945713 DOI: 10.1016/j.ijbiomac.2024.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The current food packaging films can be preservative but lack the function of combining antibacterial and sterilization which lead to films can not maximize prolong shelf life of perishable foods. This study provided a new strategy to realize prolonging shelf life of perishable foods by integrating antibacterial and sterilization which focused on applying photodynamic inactivation to films with continuous activity, where curcumin (CUR) and sodium copper chlorophyll (SCC) were loaded into chitosan (CS) films. Compared to pure CS films, the barrier capacity (oxygen permeability and water vapor permeability) and mechanical properties of composite films were improved by introducing CUR and SCC. In addition, the composite film can effectively against food-borne pathogenic bacteria and significantly prolong the shelf life of cherries and pork. The provided strategy has potential application prospects in food preservation packaging.
Collapse
Affiliation(s)
- Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| | - Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Mengyi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| |
Collapse
|
11
|
Yan R, Liu M, Zeng X, Du Q, Wu Z, Guo Y, Tu M, Pan D. Preparation of modified chitosan-based nano-TiO 2-nisin composite packaging film and preservation mechanism applied to chilled pork. Int J Biol Macromol 2024; 269:131873. [PMID: 38677699 DOI: 10.1016/j.ijbiomac.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Zhu Z, Meng L, Gao Z, Liu R, Guo X, Wang H, Kong B. Development of chitosan/polycaprolactone-thymol Janus films with directional transport and antibacterial properties for meat preservation. Int J Biol Macromol 2024; 268:131669. [PMID: 38642683 DOI: 10.1016/j.ijbiomac.2024.131669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Reducing contamination from percolate is critical to the preservation of foods with high water content, such as pork. This study aims to develop a novel active packaging material for meat preservation by precisely controlled dual-channel one-step electrospinning. Compared to traditional strategies of preparing Janus films, this method allows for greater flexibility and efficiency. The structure and properties of the Janus film are characterized by scanning electron microscopy (SEM), water contact angle (WCA), directional liquid transport investigation, Thymol release and permeation features, and biocompatibility evaluation. Moreover, the Janus film is applied to the packaging of pork with modified atmosphere packaging to demonstrate its practical application prospects in the food active packaging field. The results revealed that the two sides of the film showed completely different wettability, and the change rate of WCA increased with the increase of the scale of hydrophilic fibers. The permeation features of thymol loaded in the film was consistent with the results of antibacterial properties and biocompatibility assessment. Moreover, the Janus film can effectively prolong the shelf life, improve the quality and safety of the pork.
Collapse
Affiliation(s)
- Zhaozhang Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lingna Meng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhennan Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| | - Xiang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin 150028, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Wang C, Song Z, Cao Y, Han L, Yu Q, Han G, Zhu X. Characterization of sodium alginate-carrageenan films prepared by adding peanut shell flavonoids as an antioxidant: Application in chilled pork preservation. Int J Biol Macromol 2024; 266:131081. [PMID: 38552691 DOI: 10.1016/j.ijbiomac.2024.131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
This study prepared and characterized sodium alginate and carrageenan (SAC) composite films incorporated with peanut shell flavonoids (PSFs). PSFs compound identification research was implemented. The physicochemical features of PSFs-SAC composite films and their ability to preserve chilled pork in a 4 °C refrigerator were determined. PSFs consist of luteolin, eriodictyol, 5,7-dihydroxychromone, and 8 other components. They significantly improved the mechanical properties, barrier properties, thermal stability, and antioxidant properties of SAC composite films (P < 0.05). PSFs were also responsible for increasing the density of the film structure between the sodium alginate and carrageenan molecules. During storage, compared with the control group, the prepared PSFs-SAC composite films did not allow the total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of the chilled pork to increase rapidly. Further, they were able to inhibit lipid oxidation more effectively (P < 0.05). For these reasons, the use of the PSFs-SAC composite films prolonged shelf life of chilled pork from 6 days to the 12 days. Therefore, PSFs-SAC composite films are expected to be used as bioactive substances in food preservation.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Guangxing Han
- Shandong Lvrun Food Co., Ltd., Linyi 276017, PR China
| | - Xiaopeng Zhu
- Zhangye Wanhe Grass Livestock Industry Technology Development Co., Ltd., Zhangye 734000, PR China
| |
Collapse
|
14
|
Zhao X, Yang K, Song B, Qiu H, Zhao J, Liu H, Lin Z, Han L, Zhang R. Amphiphilic nanofibrillated cellulose/polyurethane composites with antibacterial, antifouling and self-healing properties for potential catheter applications. Int J Biol Macromol 2024; 263:130407. [PMID: 38417747 DOI: 10.1016/j.ijbiomac.2024.130407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
This study focuses on enhancing interventional medical devices, specifically catheters, using a novel composite material. Challenges like corrosion and contamination in vivo, often caused by body fluids' pH, bacteria, and proteins, lead to mechanical damage, bacterial colonization, and biofilm formation on devices like catheters. The objective of this study was to prepare a versatile composite (HFs) by designing polyurethanes (HPU) with an ionic chain extender (HIID) and blending them with amphiphilic nanofibrillated cellulose (Am-CNF). The composite leverages dynamic interactions such as hydrogen bonding and electrostatic forces, as evidenced by Molecular Mechanics (MM) calculations. The H4F0.75 composite exhibited exceptional properties: 99 % length recovery post 600 stretching cycles at 100 % strain, rapid self-healing in artificial urine, high bactericidal activity, and excellent cell viability. Moreover, mechanical aging tests and UV-vis spectral analysis confirmed the material's durability and safety. These findings suggest that the HFs composite holds significant promise for improving catheters' performance in medical applications.
Collapse
Affiliation(s)
- Xin Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Kai Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Baiyang Song
- Department of Urology, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, Zhejiang, China.
| | - Haofeng Qiu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Jiake Zhao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hongzhi Liu
- School of Materials Science and Engineering, NingboTech University, Ningbo 315100, Zhejiang Province, China
| | - Zhihao Lin
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Lijing Han
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Ruoyu Zhang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| |
Collapse
|
15
|
Safari R, Yaghoubi M, Marcinkowska‐Lesiak M, Paya H, Sun X, Rastgoo A, Rafiee M, Alirezalu K. The effects of double gelatin containing chitosan nanoparticles-calcium alginate coatings on the stability of chicken breast meat. Food Sci Nutr 2023; 11:7673-7685. [PMID: 38107100 PMCID: PMC10724606 DOI: 10.1002/fsn3.3686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of gelatin coatings (2% and 4%) containing chitosan nanoparticles (ChNPs; 1% and 2%), in combination with calcium-alginate coatings (CA; 2%), on quality attributes and shelf life of chicken breast meat were evaluated at 4°C for 12 days. The results indicated that double-active gelatin-calcium alginate coatings had significant (p < .05) effects on moisture and protein content. Incorporation of ChNPs into double gelatin-CA coatings led to significant reduction (p < .05) in TBARS, pH, and TVB-N values at the end of storage. The counts of total viable count (TVC), coliforms, yeasts, and molds were significantly (p < .05) lower in all coated samples, particularly in treated samples by 4% gelatin containing 2% ChNPs + 2% CA coatings (6.85, 6.78, and 5.91 log CFU/g, respectively, compared with 8.35, 8.76, and 7.71 log CFU/g in control) at the end of keeping time. The results of sensory attributes showed that the coated samples had higher overall acceptability scores compared with the untreated samples. A synergistic relationship between the concentrations of gelatin and ChNPs was observed in maintaining the quality characteristics of meat samples during storage. Therefore, this study aims to evaluate the performance of double gelatin coating containing ChNPs in combination with CA coating in the storage quality improvement of chicken breast meat stored for 12 days at 4 °C to develop novel and practical coatings for meat and meat products.
Collapse
Affiliation(s)
- Rashid Safari
- Department of Animal Science, Ahar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Monika Marcinkowska‐Lesiak
- Department of Technique and Food Development, Institute of Human Nutrition SciencesWarsaw University of Life SciencesWarsawPoland
| | - Hamid Paya
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of AgricultureDalhousie UniversityTruroNova ScotiaCanada
| | - Anahita Rastgoo
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mirmehdi Rafiee
- Department of Food Science and Technology, Faculty of AgricultureAzad University of KhoyKhoyIran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
16
|
Wang L, Guo R, Liang X, Ji Y, Zhang J, Gai G, Guo Z. Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups. Mar Drugs 2023; 21:606. [PMID: 38132927 PMCID: PMC10745101 DOI: 10.3390/md21120606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 μg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Liang
- School of Basic Sciences for Aviation Naval Aviation University, Yantai 264001, China;
| | - Yuting Ji
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Guowei Gai
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China;
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|